Matching Items (34)
156785-Thumbnail Image.png
Description
The students of Arizona State University, under the mentorship of Dr George Karady, have been collaborating with Salt River Project (SRP), a major power utility in the state of Arizona, trying to study and optimize a battery-supported grid-tied rooftop Photovoltaic (PV) system, sold by a commercial vendor. SRP believes this

The students of Arizona State University, under the mentorship of Dr George Karady, have been collaborating with Salt River Project (SRP), a major power utility in the state of Arizona, trying to study and optimize a battery-supported grid-tied rooftop Photovoltaic (PV) system, sold by a commercial vendor. SRP believes this system has the potential to satisfy the needs of its customers, who opt for utilizing solar power to partially satisfy their power needs.

An important part of this elaborate project is the development of a new load forecasting algorithm and a better control strategy for the optimized utilization of the storage system. The built-in algorithm of this commercial unit uses simple forecasting and battery control strategies. With the recent improvement in Machine Learning (ML) techniques, development of a more sophisticated model of the problem in hand was possible. This research is aimed at achieving the goal by utilizing the appropriate ML techniques to better model the problem, which will essentially result in a better solution. In this research, a set of six unique features are used to model the load forecasting problem and different ML algorithms are simulated on the developed model. A similar approach is taken to solve the PV prediction problem. Finally, a very effective battery control strategy is built (utilizing the results of the load and PV forecasting), with the aim of ensuring a reduction in the amount of energy consumed from the grid during the “on-peak” hours. Apart from the reduction in the energy consumption, this battery control algorithm decelerates the “cycling aging” or the aging of the battery owing to the charge/dis-charges cycles endured by selectively charging/dis-charging the battery based on need.

ii

The results of this proposed strategy are verified using a hardware implementation (the PV system was coupled with a custom-built load bank and this setup was used to simulate a house). The results pertaining to the performances of the built-in algorithm and the ML algorithm are compared and the economic analysis is performed. The findings of this research have in the process of being published in a reputed journal.
ContributorsHariharan, Aashiek (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald Thomas (Committee member) / Qin, Jiangchao (Committee member) / Allee, David R. (Committee member) / Arizona State University (Publisher)
Created2018
156913-Thumbnail Image.png
Description
With the increasing penetration of converter interfaced renewable generation into power systems, the structure and behavior of the power system is changing, catalyzing alterations and enhancements in modeling and simulation methods.

This work puts forth a Hybrid Electromagnetic Transient-Transient Stability simulation method implemented using MATLAB and Simulink, to study power electronic

With the increasing penetration of converter interfaced renewable generation into power systems, the structure and behavior of the power system is changing, catalyzing alterations and enhancements in modeling and simulation methods.

This work puts forth a Hybrid Electromagnetic Transient-Transient Stability simulation method implemented using MATLAB and Simulink, to study power electronic based power systems. Hybrid Simulation enables detailed, accurate modeling, along with fast, efficient simulation, on account of the Electromagnetic Transient (EMT) and Transient Stability (TS) simulations respectively. A critical component of hybrid simulation is the interaction between the EMT and TS simulators, established through a well-defined interface technique, which has been explored in detail.

This research focuses on the boundary conditions and interaction between the two simulation models for optimum accuracy and computational efficiency.

A case study has been carried out employing the proposed hybrid simulation method. The test case used is the IEEE 9-bus system, modified to integrate it with a solar PV plant. The validation of the hybrid model with the benchmark full EMT model, along with the analysis of the accuracy and efficiency, has been performed. The steady-state and transient analysis results demonstrate that the performance of the hybrid simulation method is competent. The hybrid simulation technique suitably captures accuracy of EMT simulation and efficiency of TS simulation, therefore adequately representing the behavior of power systems with high penetration of converter interfaced generation.
ContributorsAthaide, Denise Maria Christine (Author) / Qin, Jiangchao (Thesis advisor) / Ayyanar, Raja (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2018
157154-Thumbnail Image.png
Description
Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts

Over the years, the growing penetration of renewable energy into the electricity market has resulted in a significant change in the electricity market price. This change makes the existing forecasting method prone to error, decreasing the economic benefits. Hence, more precise forecasting methods need to be developed. This paper starts with a survey and benchmark of existing machine learning approaches for forecasting the real-time market (RTM) price. While these methods provide sufficient modeling capability via supervised learning, their accuracy is still limited due to the single data source, e.g., historical price information only. In this paper, a novel two-stage supervised learning approach is proposed by diversifying the data sources such as highly correlated power data. This idea is inspired by the recent load forecasting methods that have shown extremely well performances. Specifically, the proposed two-stage method, namely the rerouted method, learns two types of mapping rules. The first one is the mapping between the historical wind power and the historical price. The second is the forecasting rule for wind generation. Based on the two rules, we forecast the price via the forecasted generation and the first learned mapping between power and price. Additionally, we observed that it is not the more training data the better, leading to our validation steps to quantify the best training intervals for different datasets. We conduct comparisons of numerical results between existing methods and the proposed methods based on datasets from the Electric Reliability Council of Texas (ERCOT). For each machine learning step, we examine different learning methods, such as polynomial regression, support vector regression, neural network, and deep neural network. The results show that the proposed method is significantly better than existing approaches when renewables are involved.
ContributorsLuo, Shuman (Author) / Weng, Yang (Thesis advisor) / Lei, Qin (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2019
156981-Thumbnail Image.png
Description
Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage substations. The problem with switching surges is encountered when a lot of power is transmitted across a transmission line
etwork, typically from

Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage substations. The problem with switching surges is encountered when a lot of power is transmitted across a transmission line
etwork, typically from a concentrated generation node to a concentrated load. The problem becomes significantly worse when the transmission line is long and when the voltage levels are high, typically above 400 kV. These overvoltage transients occur following any type of switching action such as breaker operation, fault occurrence/clearance and energization, and they pose a very real danger to weakly interconnected systems. At EHV levels, the insulation coordination of such lines is mainly dictated by the peak level of switching surges, the most dangerous of which include three phase line energization and single-phase reclosing. Switching surges can depend on a number of independent and inter-dependent factors like voltage level, line length, tower construction, location along the line, and presence of other equipment like shunt/series reactors and capacitors.

This project discusses the approaches taken and methods applied to observe and tackle the problems associated with switching surges on a long transmission line. A detailed discussion pertaining to different aspects of switching surges and their effects is presented with results from various studies published in IEEE journals and conference papers. Then a series of simulations are presented to determine an arrangement of substation equipment with respect to incoming transmission lines; that correspond to the lowest surge levels at that substation.
ContributorsShaikh, Mohammed Mubashir (Author) / Qin, Jiangchao (Thesis advisor) / Heydt, Gerald T (Committee member) / Lei, Qin (Committee member) / Arizona State University (Publisher)
Created2018
154051-Thumbnail Image.png
Description
The demand for cleaner energy technology is increasing very rapidly. Hence it is

important to increase the eciency and reliability of this emerging clean energy technologies.

This thesis focuses on modeling and reliability of solar micro inverters. In

order to make photovoltaics (PV) cost competitive with traditional energy sources,

the economies of scale have

The demand for cleaner energy technology is increasing very rapidly. Hence it is

important to increase the eciency and reliability of this emerging clean energy technologies.

This thesis focuses on modeling and reliability of solar micro inverters. In

order to make photovoltaics (PV) cost competitive with traditional energy sources,

the economies of scale have been guiding inverter design in two directions: large,

centralized, utility-scale (500 kW) inverters vs. small, modular, module level (300

W) power electronics (MLPE). MLPE, such as microinverters and DC power optimizers,

oer advantages in safety, system operations and maintenance, energy yield,

and component lifetime due to their smaller size, lower power handling requirements,

and module-level power point tracking and monitoring capability [1]. However, they

suer from two main disadvantages: rst, depending on array topology (especially

the proximity to the PV module), they can be subjected to more extreme environments

(i.e. temperature cycling) during the day, resulting in a negative impact to

reliability; second, since solar installations can have tens of thousands to millions of

modules (and as many MLPE units), it may be dicult or impossible to track and

repair units as they go out of service. Therefore identifying the weak links in this

system is of critical importance to develop more reliable micro inverters.

While an overwhelming majority of time and research has focused on PV module

eciency and reliability, these issues have been largely ignored for the balance

of system components. As a relatively nascent industry, the PV power electronics

industry does not have the extensive, standardized reliability design and testing procedures

that exist in the module industry or other more mature power electronics

industries (e.g. automotive). To do so, the critical components which are at risk and

their impact on the system performance has to be studied. This thesis identies and

addresses some of the issues related to reliability of solar micro inverters.

This thesis presents detailed discussions on various components of solar micro inverter

and their design. A micro inverter with very similar electrical specications in

comparison with commercial micro inverter is modeled in detail and veried. Components

in various stages of micro inverter are listed and their typical failure mechanisms

are reviewed. A detailed FMEA is conducted for a typical micro inverter to identify

the weak links of the system. Based on the S, O and D metrics, risk priority number

(RPN) is calculated to list the critical at-risk components. Degradation of DC bus

capacitor is identied as one the failure mechanism and the degradation model is built

to study its eect on the system performance. The system is tested for surge immunity

using standard ring and combinational surge waveforms as per IEEE 62.41 and

IEC 61000-4-5 standards. All the simulation presented in this thesis is performed

using PLECS simulation software.
ContributorsManchanahalli Ranganatha, Arkanatha Sastry (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2015
154851-Thumbnail Image.png
Description
This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power

This dissertation presents innovative techniques to develop performance-based models and complete transient models of induction motor drive systems with vector controls in electro-magnetic transient (EMT) and positive sequence transient stability (PSTS) simulation programs. The performance-based model is implemented by obtaining the characteristic transfer functions of perturbed active and reactive power consumptions with respect to frequency and voltage perturbations. This level of linearized performance-based model is suitable for the investigation of the damping of small-magnitude low-frequency oscillations. The complete transient model is proposed by decomposing the motor, converter and control models into d-q axes components and developing a compatible electrical interface to the positive-sequence network in the PSTS simulators. The complete transient drive model is primarily used to examine the system response subject to transient voltage depression considering increasing penetration of converter-driven motor loads.

For developing the performance-based model, modulations are performed on the supply side of the full drive system to procure magnitude and phase responses of active and reactive powers with respect to the supply voltage and frequency for a range of discrete frequency points. The prediction error minimization (PEM) technique is utilized to generate the curve-fitted transfer functions and corresponding bode plots. For developing the complete drive model in the PSTS simulation program, a positive-sequence voltage source is defined properly as the interface of the model to the external system. The dc-link of the drive converter is implemented by employing the average model of the PWM converter, and is utilized to integrate the line-side rectifier and machine-side inverter.

Numerical simulation is then conducted on sample test systems, synthesized with suitable characteristics to examine performance of the developed models. The simulation results reveal that with growing amount of drive loads being distributed in the system, the small-signal stability of the system is improved in terms of the desirable damping effects on the low-frequency system oscillations of voltage and frequency. The transient stability of the system is also enhanced with regard to the stable active power and reactive power controls of the loads, and the appropriate VAr support capability provided by the drive loads during a contingency.
ContributorsLiu, Yuan (Author) / Vittal, Vijay (Thesis advisor) / Undrill, John (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
154933-Thumbnail Image.png
Description
Due to the increasing trend of electricity price for the future and the price reduction of solar electronics price led by the policy stimulus and the technological improvement, the residential distribution solar photovoltaic (PV) system’s market is prosperous. Excess energy can be sold back to the grid, however peak demand

Due to the increasing trend of electricity price for the future and the price reduction of solar electronics price led by the policy stimulus and the technological improvement, the residential distribution solar photovoltaic (PV) system’s market is prosperous. Excess energy can be sold back to the grid, however peak demand of a residential customer typically occurs in late afternoon/early evening when PV systems are not a productive. The solar PV system can provide residential customers sufficient energy during the daytime, even the exceeding energy can be sold back to the grid especially during the day with good sunlight, however, the peak demand of a regular family always appears during late afternoon and early evening which are not productive time for PV system. In this case, the PV customers only need the grid energy when other customers also need it the most. Because of the lower contribution of PV systems during times of peak demand, utilities are beginning to adjust rate structures to better align the bills paid by PV customers with the cost to the utility to serve those customers. Different rate structures include higher fixed charges, higher on-peak electricity prices, on-peak demand charges, or prices based on avoided costs. The demand charge and the on-peak energy charge significantly reduced the savings brought by the PV system. This will result in a longer the customer’s payback period. Eventually PV customers are not saving a lot in their electricity bill compare to those customers who do not own a PV system.



A battery system is a promising technology that can improve monthly bill savings since a battery can store the solar energy and the off-peak grid energy and release it later during the on-peak hours. Sponsored by Salt River Project (SRP), a smart home model consists 1.35 kW PV panels, a 7.76 kWh lithium-ion battery and an adjustable resistive load bank was built on the roof of Engineering Research Center (ERC) building. For analysis, data was scaled up by 6/1.35 times to simulate a real residential PV setup. The testing data had been continuously recorded for more than one year (Aug.2014 - Oct.2015) and a battery charging strategy was developed based on those data. The work of this thesis deals with the idea of this charging strategy and the economic benefits this charging strategy can bring to the PV customers. Part of this research work has been wrote into a conference paper which is accepted by IEEE PES General Meeting 2016. A new and larger system has been installed on the roof with 6 kW PV modules and 6 kW output integrated electronics. This project will go on and the method come up by this thesis will be tested.
ContributorsWang, Xin'an (Author) / Karady, George G. (Thesis advisor) / Smedley, Grant (Committee member) / Qin, Jiangchao (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2016
155042-Thumbnail Image.png
Description
The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models

The past decades have seen a significant shift in the expectations and requirements re-lated to power system analysis tools. Investigations into major power grid disturbances have suggested the need for more comprehensive assessment methods. Accordingly, sig-nificant research in recent years has focused on the development of better power system models and efficient techniques for analyzing power system operability. The work done in this report focusses on two such topics

1. Analysis of load model parameter uncertainty and sensitivity based pa-rameter estimation for power system studies

2. A systematic approach to n-1-1 analysis for power system security as-sessment

To assess the effect of load model parameter uncertainty, a trajectory sensitivity based approach is proposed in this work. Trajectory sensitivity analysis provides a sys-tematic approach to study the impact of parameter uncertainty on power system re-sponse to disturbances. Furthermore, the non-smooth nature of the composite load model presents some additional challenges to sensitivity analysis in a realistic power system. Accordingly, the impact of the non-smooth nature of load models on the sensitivity analysis is addressed in this work. The study was performed using the Western Electrici-ty Coordinating Council (WECC) system model. To address the issue of load model pa-rameter estimation, a sensitivity based load model parameter estimation technique is presented in this work. A detailed discussion on utilizing sensitivities to improve the ac-curacy and efficiency of the parameter estimation process is also presented in this work.

Cascading outages can have a catastrophic impact on power systems. As such, the NERC transmission planning (TPL) standards requires utilities to plan for n¬-1-1 out-ages. However, such analyses can be computationally burdensome for any realistic pow-er system owing to the staggering number of possible n-1-1 contingencies. To address this problem, the report proposes a systematic approach to analyze n-1-1 contingencies in a computationally tractable manner for power system security assessment. The pro-posed approach addresses both static and dynamic security assessment. The proposed methods have been tested on the WECC system.
ContributorsMitra, Parag (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2016
155506-Thumbnail Image.png
Description
With the status of nuclear proliferation around the world becoming more and more complex, nuclear forensics methods are needed to restrain the unlawful usage of nuclear devices. Lithium-ion batteries are present ubiquitously in consumer electronic devices nowadays. More importantly, the materials inside the batteries have the potential to be used

With the status of nuclear proliferation around the world becoming more and more complex, nuclear forensics methods are needed to restrain the unlawful usage of nuclear devices. Lithium-ion batteries are present ubiquitously in consumer electronic devices nowadays. More importantly, the materials inside the batteries have the potential to be used as neutron detectors, just like the activation foils used in reactor experiments. Therefore, in a nuclear weapon detonation incident, these lithium-ion batteries can serve as sensors that are spatially distributed.

In order to validate the feasibility of such an approach, Monte Carlo N-Particle (MCNP) models are built for various lithium-ion batteries, as well as neutron transport from different fission nuclear weapons. To obtain the precise battery compositions for the MCNP models, a destructive inductively coupled plasma mass spectrometry (ICP-MS) analysis is utilized. The same battery types are irradiated in a series of reactor experiments to validate the MCNP models and the methodology. The MCNP nuclear weapon radiation transport simulations are used to mimic the nuclear detonation incident to study the correlation between the nuclear reactions inside the batteries and the neutron spectra. Subsequently, the irradiated battery activities are used in the SNL-SAND-IV code to reconstruct the neutron spectrum for both the reactor experiments and the weapon detonation simulations.

Based on this study, empirical data show that the lithium-ion batteries have the potential to serve as widely distributed neutron detectors in this simulated environment to (1) calculate the nuclear device yield, (2) differentiate between gun and implosion fission weapons, and (3) reconstruct the neutron spectrum of the device.
ContributorsZhang, Taipeng (Author) / Holbert, Keith E. (Thesis advisor) / Karady, George G. (Committee member) / Qin, Jiangchao (Committee member) / Metzger, Robert (Committee member) / Arizona State University (Publisher)
Created2017
155364-Thumbnail Image.png
Description
In the recent past, due to regulatory hurdles and the inability to expand transmission systems, the bulk power system is increasingly being operated close to its limits. Among the various phenomenon encountered, static voltage stability has received increased attention among electric utilities. One approach to investigate static voltage stability is

In the recent past, due to regulatory hurdles and the inability to expand transmission systems, the bulk power system is increasingly being operated close to its limits. Among the various phenomenon encountered, static voltage stability has received increased attention among electric utilities. One approach to investigate static voltage stability is to run a set of power flow simulations and derive the voltage stability limit based on the analysis of power flow results. Power flow problems are formulated as a set of nonlinear algebraic equations usually solved by iterative methods. The most commonly used method is the Newton-Raphson method. However, at the static voltage stability limit, the Jacobian becomes singular. Hence, the power flow solution may fail to converge close to the true limit.

To carefully examine the limitations of conventional power flow software packages in determining voltage stability limits, two lines of research are pursued in this study. The first line of the research is to investigate the capability of different power flow solution techniques, such as conventional power flow and non-iterative power flow techniques to obtain the voltage collapse point. The software packages used in this study include Newton-based methods contained in PSSE, PSLF, PSAT, PowerWorld, VSAT and a non-iterative technique known as the holomorphic embedding method (HEM).

The second line is to investigate the impact of the available control options and solution parameter settings that can be utilized to obtain solutions closer to the voltage collapse point. Such as the starting point, generator reactive power limits, shunt device control modes, area interchange control, and other such parameters.
ContributorsYi, Weili (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Thesis advisor) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2017