Matching Items (31)
133045-Thumbnail Image.png
Description
Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a

Human papillomavirus (HPV) is the causative agent of cervical cancer. Persistent infection with high-risk HPV 16, 18 or 45 species is associated with the development and progression of cervical cancer. HPV genotyping and Pap smear tests are the regular methods used to detect pre-invasive cervical lesions, but there is a need for developing a rapid biomarker to profile immunity to these viruses. The viral E7 oncogene is expressed in most HPV-associated cancers and anti-E7 antibodies can be detected in the blood of patients with cervical cancer. This research was focused on viral E7 oncogene expression to be used in development of low-cost point of care tests, enabling patients from low resource settings to detect the asymptotic stage of cervical cancer and be able to seek treatment early. In order to produce the E7 protein in vitro to measure antibody levels, GST tagged E7 genes from HPV 16, 18 and 45 species were inserted into the pDEST15 vector and expressed in E. coli BL21DE3 cells that were induced with 1mM of IPTG. The E7-GST fused expressed protein was then purified using glutathione beads and resolved on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Protein expression was 5.8 \u03bcg/ml for HPV 16E7 in 500 ml culture and for the 500 ml culture of HPV 18 E7 and 45 E7 were 10.5 \u03bcg/ml and 10.5 \u03bcg/ml for HPV 18E7 and 45E7 respectively. High yield values are showing high expression levels of GST-tagged E7 recombinant protein which can be used for serotyping a number of individuals. This shows that HPV E7 can be produced in large quantities that can potentially be used in point of care tests that can help identify women at risk of cervical cancer. In conclusion, the E7 protein produced in this study can potentially be used to induce humoral responses in patients\u2019 sera for understanding the immune response of cervical cancer.
ContributorsMakuyana, Ntombizodwa (Author) / Anderson, Karen (Thesis director) / Ewaisha, Radwa (Committee member) / Varsani, Arvind (Committee member) / Hou, Ching-Wen (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
147886-Thumbnail Image.png
Description

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in

The goal of this project was to design and create a genetic construct that would allow for <br/>tumor growth to be induced in the center of the wing imaginal disc of Drosophila larvae, the <br/>R85E08 domain, using a heat shock. The resulting transgene would be combined with other <br/>transgenes in a single fly that would allow for simultaneous expression of the oncogene and, in <br/>the surrounding cells, other genes of interest. This system would help establish Drosophila as a <br/>more versatile and reliable model organism for cancer research. Furthermore, pilot studies were <br/>performed, using elements of the final proposed system, to determine if tumor growth is possible <br/>in the center of the disc, which oncogene produces the best results, and if oncogene expression <br/>induced later in development causes tumor growth. Three different candidate genes were <br/>investigated: RasV12, PvrACT, and Avli.

ContributorsSt Peter, John Daniel (Author) / Harris, Rob (Thesis director) / Varsani, Arvind (Committee member) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148480-Thumbnail Image.png
Description

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a

Members of the Delphinidae family are widely distributed across the world’s oceans. We used a viral metagenomic approach to identify viruses in orca (Orcinus orca) and short-finned pilot whale (Globicephala macrorhynchus) muscle, kidney, and liver samples from deceased animals. From orca tissue samples (muscle, kidney, and liver), we identified a novel polyomavirus (Polyomaviridae), three cressdnaviruses, and two genomoviruses (Genomoviridae). In the short-finned pilot whale we were able to identify one genomovirus in a kidney sample. The presence of unclassified cressdnavirus within two samples (muscle and kidney) of the same animal supports the possibility these viruses might be widespread within the animal. The orca polyomavirus identified here is the first of its species and is not closely related to the only other dolphin polyomavirus previously discovered. The identification and verification of these viruses expands the current knowledge of viruses that are associated with the Delphinidae family.

ContributorsSmith, Kendal Ryan (Author) / Varsani, Arvind (Thesis director) / Kraberger, Simona (Committee member) / Dolby, Greer (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
128130-Thumbnail Image.png
Description

Background: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane

Background: In Africa and Asia, sugarcane is the host of at least seven different virus species in the genus Mastrevirus of the family Geminiviridae. However, with the exception of Sugarcane white streak virus in Barbados, no other sugarcane-infecting mastrevirus has been reported in the New World. Conservation and exchange of sugarcane germplasm using stalk cuttings facilitates the spread of sugarcane-infecting viruses.

Methods: A virion-associated nucleic acids (VANA)-based metagenomics approach was used to detect mastrevirus sequences in 717 sugarcane samples from Florida (USA), Guadeloupe (French West Indies), and Réunion (Mascarene Islands). Contig assembly was performed using CAP3 and sequence searches using BLASTn and BLASTx. Mastrevirus full genomes were enriched from total DNA by rolling circle amplification, cloned and sequenced. Nucleotide and amino acid sequence identities were determined using SDT v1.2. Phylogenetic analyses were conducted using MEGA6 and PHYML3.

Results: We identified a new sugarcane-infecting mastrevirus in six plants sampled from germplasm collections in Florida and Guadeloupe. Full genome sequences were determined and analyzed for three virus isolates from Florida, and three from Guadeloupe. These six genomes share >88% genome-wide pairwise identity with one another and between 89 and 97% identity with a recently identified mastrevirus (KR150789) from a sugarcane plant sampled in China. Sequences similar to these were also identified in sugarcane plants in Réunion.

Conclusions: As these virus isolates share <64% genome-wide identity with all other known mastreviruses, we propose classifying them within a new mastrevirus species named Sugarcane striate virus. This is the first report of sugarcane striate virus (SCStV) in the Western Hemisphere, a virus that most likely originated in Asia. The distribution, vector, and impact of SCStV on sugarcane production remains to be determined.

ContributorsBoukari, Wardatou (Author) / Alcala-Briseno, Ricardo I. (Author) / Kraberger, Simona Joop (Author) / Fernandez, Emmanuel (Author) / Filloux, Denis (Author) / Daugrois, Jean-Heinrich (Author) / Comstock, Jack C. (Author) / Lett, Jean-Michel (Author) / Martin, Darren P. (Author) / Varsani, Arvind (Author) / Roumagnac, Philippe (Author) / Polston, Jane E. (Author) / Rott, Philippe C. (Author) / Biodesign Institute (Contributor)
Created2017-07-28
128136-Thumbnail Image.png
Description

Bacteriophages are ideal candidates for pathogen biocontrol to mitigate outbreaks of prevalent foodborne pathogens, such as Escherichia coli. We identified a bacteriophage (AAPEc6) from wastewater that infects E. coli O45:H10. The AAPEc6 genome sequence shares 93% identity (with 92% coverage) to enterobacterial phage K1E (Sp6likevirus) in the Autographivirinae subfamily (Podoviridae).

ContributorsNonis, Judith (Author) / Premaratne, Aruni (Author) / Billington, Craig (Author) / Varsani, Arvind (Author) / Biodesign Institute (Contributor)
Created2017-08-03
128339-Thumbnail Image.png
Description

With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses with small (∼2–2.4 kb), circular ssDNA genomes encoding rolling-circle replication initiation

With the advent of metagenomics approaches, a large diversity of known and unknown viruses has been identified in various types of environmental, plant, and animal samples. One such widespread virus group is the recently established family Genomoviridae which includes viruses with small (∼2–2.4 kb), circular ssDNA genomes encoding rolling-circle replication initiation proteins (Rep) and unique capsid proteins. Here, we propose a sequence-based taxonomic framework for classification of 121 new virus genomes within this family. Genomoviruses display ∼47% sequence diversity, which is very similar to that within the well-established and extensively studied family Geminiviridae (46% diversity). Based on our analysis, we establish a 78% genome-wide pairwise identity as a species demarcation threshold. Furthermore, using a Rep sequence phylogeny-based analysis coupled with the current knowledge on the classification of geminiviruses, we establish nine genera within the Genomoviridae family. These are Gemycircularvirus (n = 73), Gemyduguivirus (n = 1), Gemygorvirus (n = 9), Gemykibivirus (n = 29), Gemykolovirus (n = 3), Gemykrogvirus (n = 3), Gemykroznavirus (n = 1), Gemytondvirus (n = 1), Gemyvongvirus (n = 1). The presented taxonomic framework offers rational classification of genomoviruses based on the sequence information alone and sets an example for future classification of other groups of uncultured viruses discovered using metagenomics approaches.

ContributorsVarsani, Arvind (Author) / Krupovic, Mart (Author) / Biodesign Institute (Contributor)
Created2017-02-02
128352-Thumbnail Image.png
Description

Four genomovirus genomes were recovered from thrips (Echinothrips americanus) collected in Florida, USA. These represent four new species which are members of the Gemycircularvirus (n = 2), Gemyduguivirus (n = 1), and Gemykibivirus (n = 1) genera. This is the first record, to our knowledge, of genomoviruses associated with a

Four genomovirus genomes were recovered from thrips (Echinothrips americanus) collected in Florida, USA. These represent four new species which are members of the Gemycircularvirus (n = 2), Gemyduguivirus (n = 1), and Gemykibivirus (n = 1) genera. This is the first record, to our knowledge, of genomoviruses associated with a phytophagous insect.

ContributorsKraberger, Simona Joop (Author) / Polston, Jane E. (Author) / Capobianco, Heather M. (Author) / Alcala-Briseno, Ricardo I. (Author) / Fontenele, Rafaela Salgado (Author) / Varsani, Arvind (Author) / Biodesign Institute (Contributor)
Created2017-05-25
128437-Thumbnail Image.png
Description

Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule.

ContributorsWalters, Matthew (Author) / Bawuro, Musa (Author) / Christopher, Alfred (Author) / Knight, Alexander (Author) / Kraberger, Simona (Author) / Stainton, Daisy (Author) / Chapman, Hazel (Author) / Varsani, Arvind (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-03-02
128444-Thumbnail Image.png
Description

Implementation of a vector-enabled metagenomics approach resulted in the identification of various gemini viruses. We identified the genome sequences of beet curly top Iran virus, turnip curly top viruses, oat dwarf viruses, the first from Iran, and wheat dwarf virus from leafhoppers feeding on beet, parsley, pumpkin, and turnip plants.

ContributorsKamali, Mehdi (Author) / Heydarnejad, Jahangir (Author) / Pouramini, Najmeh (Author) / Masumi, Hossain (Author) / Farkas, Kata (Author) / Kraberger, Simona (Author) / Varsani, Arvind (Author) / College of Liberal Arts and Sciences (Contributor)
Created2017-02-23
128445-Thumbnail Image.png
Description

Here we report the first complete genome sequence of a cauliflower mosaic virus from Brazil, obtained from the gut content of the predator earwig (Doru luteipes). This virus has a genome of 8,030 nucleotides (nt) and shares 97% genome-wide identity with an isolate from Argentina.

Created2017-03-16