Matching Items (1,573)
Filtering by

Clear all filters

133888-Thumbnail Image.png
Description
As the prevalence and awareness of Autism Spectrum Disorder (ASD) increases, so does the variety of treatment options for primary symptoms (social interaction, communication, behavior) and secondary symptoms (anxiety, hyperactivity, GI problems, and insomnia). Various treatments, from Adderall to Citalopram to Flax Seed Oil promise relief for these symptoms. However,

As the prevalence and awareness of Autism Spectrum Disorder (ASD) increases, so does the variety of treatment options for primary symptoms (social interaction, communication, behavior) and secondary symptoms (anxiety, hyperactivity, GI problems, and insomnia). Various treatments, from Adderall to Citalopram to Flax Seed Oil promise relief for these symptoms. However, very little research has actually been done on some of these treatments. Additionally, the research that has been done fails to compare these treatments against one another in terms of symptom relief. The Autism Treatment Effectiveness Survey, written by Dr. James Adams, director of the Autism/Asperger's Research Program at ASU, and graduate student/program coordinator Devon Coleman, aims to fill this gap. The survey numerically rates medications based on benefit and adverse effects, in addition to naming specific symptoms that are impacted by the treatments. However, the survey itself was retrospective in nature and requires further evidence to support its claims. Therefore, the purpose of this research paper is to evaluate evidence related to the results of the survey. After the performing an extensive literature review of over 70 different treatments, it appears that the findings of the Autism Treatment Effectiveness Survey are generally well supported. There were a few minor discrepancies regarding the primary benefitted symptom, but there was not enough of a conflict to discount the information from the survey. As research is still ongoing, conclusions cannot yet be drawn for Nutritional Supplements, although the current data looks promising.
ContributorsAnderson, Amy Lynn (Author) / Adams, James (Thesis director) / Coleman, Devon (Committee member) / School of Nutrition and Health Promotion (Contributor) / W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133904-Thumbnail Image.png
Description
Osteoporosis is a medical condition that leads to decreased bone mineral density, resulting in increased fracture risk.1 Research regarding the relationship between sleep and bone mass is limited and has primarily been studied in elderly adults. While this population is most affected by osteoporosis, adolescents are the most proactive population

Osteoporosis is a medical condition that leads to decreased bone mineral density, resulting in increased fracture risk.1 Research regarding the relationship between sleep and bone mass is limited and has primarily been studied in elderly adults. While this population is most affected by osteoporosis, adolescents are the most proactive population in terms of prevention. The purpose of this study was to evaluate the relationship between sleep efficiency and serum osteocalcin in college-aged individuals as a means of osteoporosis prevention. Thirty participants ages 18-25 years (22 females, 8 males) at Arizona State University were involved in this cross-sectional study. Data were collected during one week via self-recorded sleep diaries, quantitative ActiWatch, DEXA imaging, and serum blood draws to measure the bone biomarker osteocalcin. Three participants were excluded from the study as outliers. The median (IQR) for osteocalcin measured by ELISA was 11.6 (9.7, 14.5) ng/mL. The average sleep efficiency measured by actigraphy was 88.3% ± 3.0%. Regression models of sleep efficiency and osteocalcin concentration were not statistically significant. While the addition of covariates helped explain more of the variation in serum osteocalcin concentration, the results remained insignificant. There was a trend between osteocalcin and age, suggesting that as age increases, osteocalcin decreases. This was a limited study, and further investigation regarding the relationship between sleep efficiency and osteocalcin is warranted.
ContributorsMarsh, Courtney Nicole (Author) / Whisner, Corrie (Thesis director) / Mahmood, Tara (Committee member) / School of International Letters and Cultures (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
133906-Thumbnail Image.png
Description
Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training, metabolism can be modified to respond more efficiently to aerobic stimulus. During an acute bout of exercise, cardiac output increases

Adenosine triphosphate (ATP) is the driving force of the human body which allows individuals to move freely. Metabolism is responsible for its creation, and research has indicated that with training, metabolism can be modified to respond more efficiently to aerobic stimulus. During an acute bout of exercise, cardiac output increases to maintain oxygen supply to the body. Oxidative muscle fibers contract to move the body for prolonged periods of time, creating oxidative stress which is managed by the mitochondria which produce the ATP that supplies the muscle fiber, and as the body returns to its resting state, oxygen continues to be consumed in order to return to steady state. Following endurance training, changes in cardiac output, muscle fiber types, mitochondria, substrate utilization, and oxygen consumption following exercise make adaptations to make metabolism more efficient. Resting heart rate decreases and stroke volume increases. Fast twitch muscle fibers shift into more oxidative fibers, sometimes through mitochondrial biogenesis, and more fat is able to be utilized during exercise. The excess postexercise oxygen consumption following exercise bouts is reduced, and return to steady state becomes quicker. In conclusion, endurance training optimizes metabolic response during acute bouts of aerobic exercise.
ContributorsWarner, Erin (Author) / Nolan, Nicole (Thesis director) / Cataldo, Donna (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05