Matching Items (9)
Filtering by

Clear all filters

133911-Thumbnail Image.png
Description
The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of accuracy on the different choices of windows and the size

The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of accuracy on the different choices of windows and the size of the overlapping regions. We use Matlab to manipulate each of the variables involved in these computations as well as the overall error, thus enabling us to decide which specific values produce the most accurate results. This work is motivated by problems arising in atmospheric research.
ContributorsSopa, Megan Grace (Author) / Platte, Rodrigo (Thesis director) / Kostelich, Eric (Committee member) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135425-Thumbnail Image.png
Description
The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor

The detection and characterization of transients in signals is important in many wide-ranging applications from computer vision to audio processing. Edge detection on images is typically realized using small, local, discrete convolution kernels, but this is not possible when samples are measured directly in the frequency domain. The concentration factor edge detection method was therefore developed to realize an edge detector directly from spectral data. This thesis explores the possibilities of detecting edges from the phase of the spectral data, that is, without the magnitude of the sampled spectral data. Prior work has demonstrated that the spectral phase contains particularly important information about underlying features in a signal. Furthermore, the concentration factor method yields some insight into the detection of edges in spectral phase data. An iterative design approach was taken to realize an edge detector using only the spectral phase data, also allowing for the design of an edge detector when phase data are intermittent or corrupted. Problem formulations showing the power of the design approach are given throughout. A post-processing scheme relying on the difference of multiple edge approximations yields a strong edge detector which is shown to be resilient under noisy, intermittent phase data. Lastly, a thresholding technique is applied to give an explicit enhanced edge detector ready to be used. Examples throughout are demonstrate both on signals and images.
ContributorsReynolds, Alexander Bryce (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Viswanathan, Adityavikram (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135434-Thumbnail Image.png
Description
Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact that smooth functions can be represented very efficiently by polynomial

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact that smooth functions can be represented very efficiently by polynomial interpolation at Chebyshev points or by trigonometric interpolation at equispaced points for periodic functions. More recently, the system has been extended to handle bivariate functions and vector fields. These two new classes of objects are called Chebfun2 and Chebfun2v, respectively. We will show that Chebfun2 and Chebfun2v, and can be used to accurately and efficiently perform various computations on parametric surfaces in two or three dimensions, including path trajectories and mean and Gaussian curvatures. More advanced surface computations such as mean curvature flows are also explored. This is also the first work to use the newly implemented trigonometric representation, namely Trigfun, for computations on surfaces.
ContributorsPage-Bottorff, Courtney Michelle (Author) / Platte, Rodrigo (Thesis director) / Kostelich, Eric (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136533-Thumbnail Image.png
Description
Physical limitations of Magnetic Resonance Imaging (MRI) introduce different errors in the image reconstruction process. The discretization and truncation of data under discrete Fourier transform causes oscillations near jump discontinuities, a phenomenon known as the Gibbs effect. Using Gaussian-based approximations rather than the discrete Fourier transform to reconstruct images serves

Physical limitations of Magnetic Resonance Imaging (MRI) introduce different errors in the image reconstruction process. The discretization and truncation of data under discrete Fourier transform causes oscillations near jump discontinuities, a phenomenon known as the Gibbs effect. Using Gaussian-based approximations rather than the discrete Fourier transform to reconstruct images serves to diminish the Gibbs effect slightly, especially when coupled with filtering. Additionally, a simplifying assumption is made that, during signal collection, the amount of transverse magnetization decay at a point does not depend on that point's position in space. Though this methodology significantly reduces operational run-time, it nonetheless introduces geometric error, which can be mitigated using Single-Shot (SS) Parse.
ContributorsNeufer, Ian Douglas (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2015-05
137504-Thumbnail Image.png
Description
The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.
ContributorsGutierrez, Alexander Jay (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Viswanathan, Adityavikram (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
137108-Thumbnail Image.png
Description
Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun automatically determines the number of nodes necessary for representations that

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun automatically determines the number of nodes necessary for representations that are accurate to close to machine precision. Common MATLAB functions have been overloaded to keep the syntax of the Fourfun class as consistent as possible with the general MATLAB syntax. We show that the system can be used to efficiently solve several differential equations. Comparisons with Chebfun, a similar system based on Chebyshev polynomial approximations, are provided.
ContributorsMcleod, Kristyn Noelle (Author) / Platte, Rodrigo (Thesis director) / Gelb, Anne (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-05
137687-Thumbnail Image.png
Description
The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as those defining the locations of tumors. It can also be an invaluable tool in the amelioration of the negative effects of the Gibbs phenomenon on reconstructions of functions with discontinuities or images in multi-dimensions with internal edges. In this thesis we develop a novel method for recovering edges from non-uniform Fourier data by adapting the "convolutional gridding" method of function reconstruction. We analyze the behavior of the method in one dimension and then extend it to two dimensions on several examples.
ContributorsMartinez, Adam (Author) / Gelb, Anne (Thesis director) / Cochran, Douglas (Committee member) / Platte, Rodrigo (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2013-05
135973-Thumbnail Image.png
Description
Imaging technologies such as Magnetic Resonance Imaging (MRI) and Synthetic Aperture Radar (SAR) collect Fourier data and then process the data to form images. Because images are piecewise smooth, the Fourier partial sum (i.e. direct inversion of the Fourier data) yields a poor approximation, with spurious oscillations forming at the

Imaging technologies such as Magnetic Resonance Imaging (MRI) and Synthetic Aperture Radar (SAR) collect Fourier data and then process the data to form images. Because images are piecewise smooth, the Fourier partial sum (i.e. direct inversion of the Fourier data) yields a poor approximation, with spurious oscillations forming at the interior edges of the image and reduced accuracy overall. This is the well known Gibbs phenomenon and many attempts have been made to rectify its effects. Previous algorithms exploited the sparsity of edges in the underlying image as a constraint with which to optimize for a solution with reduced spurious oscillations. While the sparsity enforcing algorithms are fairly effective, they are sensitive to several issues, including undersampling and noise. Because of the piecewise nature of the underlying image, we theorize that projecting the solution onto the wavelet basis would increase the overall accuracy. Thus in this investigation we develop an algorithm that continues to exploit the sparsity of edges in the underlying image while also seeking to represent the solution using the wavelet rather than Fourier basis. Our method successfully decreases the effect of the Gibbs phenomenon and provides a good approximation for the underlying image. The primary advantages of our method is its robustness to undersampling and perturbations in the optimization parameters.
ContributorsFan, Jingjing (Co-author) / Mead, Ryan (Co-author) / Gelb, Anne (Thesis director) / Platte, Rodrigo (Committee member) / Archibald, Richard (Committee member) / School of Music (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
148057-Thumbnail Image.png
Description

This thesis project focuses on algorithms that generate good sampling points for function approximation. In one dimension, polynomial interpolation using equispaced points is unstable, with high Oscillations near the endpoints of the interpolated interval. On the other hand, Chebyshev nodes provide both stable and highly accurate points for polynomial

This thesis project focuses on algorithms that generate good sampling points for function approximation. In one dimension, polynomial interpolation using equispaced points is unstable, with high Oscillations near the endpoints of the interpolated interval. On the other hand, Chebyshev nodes provide both stable and highly accurate points for polynomial interpolation. In higher dimensions, optimal sampling points are unknown. This project addresses this problem by finding algorithms that are robust in various domains for polynomial interpolation and least-squares. To measure the quality of the nodes produced by said algorithms, the Lebesgue constant will be used. In the algorithms, a number of numerical techniques will be used, such as the Gram-Schmidt process and the pivoted-QR process. In addition, concepts such as node density and greedy algorithms will be explored.

ContributorsGuo, Maosheng (Author) / Platte, Rodrigo (Thesis director) / Welfert, Bruno (Committee member) / School of Mathematical and Statistical Sciences (Contributor, Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05