Matching Items (33)

133911-Thumbnail Image.png

Computations on Spherical Domains

Description

The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of

The main goal of this project is to study approximations of functions on circular and spherical domains using the cubed sphere discretization. On each subdomain, the function is approximated by windowed Fourier expansions. Of particular interest is the dependence of accuracy on the different choices of windows and the size of the overlapping regions. We use Matlab to manipulate each of the variables involved in these computations as well as the overall error, thus enabling us to decide which specific values produce the most accurate results. This work is motivated by problems arising in atmospheric research.

Contributors

Created

Date Created
2018-05

135973-Thumbnail Image.png

An l1 Regularization Algorithm for Reconstructing Piecewise Smooth Functions from Fourier Data Using Wavelet Projection

Description

Imaging technologies such as Magnetic Resonance Imaging (MRI) and Synthetic Aperture Radar (SAR) collect Fourier data and then process the data to form images. Because images are piecewise smooth, the Fourier partial sum (i.e. direct inversion of the Fourier data)

Imaging technologies such as Magnetic Resonance Imaging (MRI) and Synthetic Aperture Radar (SAR) collect Fourier data and then process the data to form images. Because images are piecewise smooth, the Fourier partial sum (i.e. direct inversion of the Fourier data) yields a poor approximation, with spurious oscillations forming at the interior edges of the image and reduced accuracy overall. This is the well known Gibbs phenomenon and many attempts have been made to rectify its effects. Previous algorithms exploited the sparsity of edges in the underlying image as a constraint with which to optimize for a solution with reduced spurious oscillations. While the sparsity enforcing algorithms are fairly effective, they are sensitive to several issues, including undersampling and noise. Because of the piecewise nature of the underlying image, we theorize that projecting the solution onto the wavelet basis would increase the overall accuracy. Thus in this investigation we develop an algorithm that continues to exploit the sparsity of edges in the underlying image while also seeking to represent the solution using the wavelet rather than Fourier basis. Our method successfully decreases the effect of the Gibbs phenomenon and provides a good approximation for the underlying image. The primary advantages of our method is its robustness to undersampling and perturbations in the optimization parameters.

Contributors

Agent

Created

Date Created
2015-12

137108-Thumbnail Image.png

FOURFUN: A new system for automatic computations using Fourier expansions

Description

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun

Using object-oriented programming in MATLAB, a collection of functions, named Fourfun, has been created to allow quick and accurate approximations of periodic functions with Fourier expansions. To increase efficiency and reduce the number of computations of the Fourier transform, Fourfun automatically determines the number of nodes necessary for representations that are accurate to close to machine precision. Common MATLAB functions have been overloaded to keep the syntax of the Fourfun class as consistent as possible with the general MATLAB syntax. We show that the system can be used to efficiently solve several differential equations. Comparisons with Chebfun, a similar system based on Chebyshev polynomial approximations, are provided.

Contributors

Created

Date Created
2014-05

136533-Thumbnail Image.png

Two Approaches to MRI Reconstruction: Gaussian Radial Basis Functions and Single Shot Parse

Description

Physical limitations of Magnetic Resonance Imaging (MRI) introduce different errors in the image reconstruction process. The discretization and truncation of data under discrete Fourier transform causes oscillations near jump discontinuities, a phenomenon known as the Gibbs effect. Using Gaussian-based approximations

Physical limitations of Magnetic Resonance Imaging (MRI) introduce different errors in the image reconstruction process. The discretization and truncation of data under discrete Fourier transform causes oscillations near jump discontinuities, a phenomenon known as the Gibbs effect. Using Gaussian-based approximations rather than the discrete Fourier transform to reconstruct images serves to diminish the Gibbs effect slightly, especially when coupled with filtering. Additionally, a simplifying assumption is made that, during signal collection, the amount of transverse magnetization decay at a point does not depend on that point's position in space. Though this methodology significantly reduces operational run-time, it nonetheless introduces geometric error, which can be mitigated using Single-Shot (SS) Parse.

Contributors

Agent

Created

Date Created
2015-05

135434-Thumbnail Image.png

Computations on Parameterized Surfaces with Chebfun2

Description

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact

Chebfun is a collection of algorithms and an open-source software system in object-oriented Matlab that extends familiar powerful methods of numerical computation involving numbers to continuous or piecewise-continuous functions. The success of this strategy is based on the mathematical fact that smooth functions can be represented very efficiently by polynomial interpolation at Chebyshev points or by trigonometric interpolation at equispaced points for periodic functions. More recently, the system has been extended to handle bivariate functions and vector fields. These two new classes of objects are called Chebfun2 and Chebfun2v, respectively. We will show that Chebfun2 and Chebfun2v, and can be used to accurately and efficiently perform various computations on parametric surfaces in two or three dimensions, including path trajectories and mean and Gaussian curvatures. More advanced surface computations such as mean curvature flows are also explored. This is also the first work to use the newly implemented trigonometric representation, namely Trigfun, for computations on surfaces.

Contributors

Created

Date Created
2016-05

148057-Thumbnail Image.png

Optimal Sampling for Function Approximation

Description

This thesis project focuses on algorithms that generate good sampling points for function approximation. In one dimension, polynomial interpolation using equispaced points is unstable, with high Oscillations near the endpoints of the interpolated interval. On the other hand, Chebyshev

This thesis project focuses on algorithms that generate good sampling points for function approximation. In one dimension, polynomial interpolation using equispaced points is unstable, with high Oscillations near the endpoints of the interpolated interval. On the other hand, Chebyshev nodes provide both stable and highly accurate points for polynomial interpolation. In higher dimensions, optimal sampling points are unknown. This project addresses this problem by finding algorithms that are robust in various domains for polynomial interpolation and least-squares. To measure the quality of the nodes produced by said algorithms, the Lebesgue constant will be used. In the algorithms, a number of numerical techniques will be used, such as the Gram-Schmidt process and the pivoted-QR process. In addition, concepts such as node density and greedy algorithms will be explored.

Contributors

Agent

Created

Date Created
2021-05

152362-Thumbnail Image.png

Time-dependent models of signal transduction networks

Description

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. When these equations are organized into a cascade, it is demonstrated that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting that natural selection may have favored signaling cascades as a parsimonious solution to the problem of generating switch-like behavior in a noisy environment.

Contributors

Agent

Created

Date Created
2013

137687-Thumbnail Image.png

Edge Detection from Non-Uniform Fourier Data via a Modified Method of Convolutional Gridding

Description

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and

The recovery of edge information in the physical domain from non-uniform Fourier data is of importance in a variety of applications, particularly in the practice of magnetic resonance imaging (MRI). Edge detection can be important as a goal in and of itself in the identification of tissue boundaries such as those defining the locations of tumors. It can also be an invaluable tool in the amelioration of the negative effects of the Gibbs phenomenon on reconstructions of functions with discontinuities or images in multi-dimensions with internal edges. In this thesis we develop a novel method for recovering edges from non-uniform Fourier data by adapting the "convolutional gridding" method of function reconstruction. We analyze the behavior of the method in one dimension and then extend it to two dimensions on several examples.

Contributors

Agent

Created

Date Created
2013-05

137504-Thumbnail Image.png

Edge Informed Fourier Reconstruction from Non-Uniform Spectral Data

Description

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the

The reconstruction of piecewise smooth functions from non-uniform Fourier data arises in sensing applications such as magnetic resonance imaging (MRI). This thesis presents a new polynomial based resampling method (PRM) for 1-dimensional problems which uses edge information to recover the Fourier transform at its integer coefficients, thereby enabling the use of the inverse fast Fourier transform algorithm. By minimizing the error of the PRM approximation at the sampled Fourier modes, the PRM can also be used to improve on initial edge location estimates. Numerical examples show that using the PRM to improve on initial edge location estimates and then taking of the PRM approximation of the integer frequency Fourier coefficients is a viable way to reconstruct the underlying function in one dimension. In particular, the PRM is shown to converge more quickly and to be more robust than current resampling techniques used in MRI, and is particularly amenable to highly irregular sampling patterns.

Contributors

Created

Date Created
2013-05

151507-Thumbnail Image.png

Solution methods for certain evolution equations

Description

Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs

Solution methods for certain linear and nonlinear evolution equations are presented in this dissertation. Emphasis is placed mainly on the analytical treatment of nonautonomous differential equations, which are challenging to solve despite the existent numerical and symbolic computational software programs available. Ideas from the transformation theory are adopted allowing one to solve the problems under consideration from a non-traditional perspective. First, the Cauchy initial value problem is considered for a class of nonautonomous and inhomogeneous linear diffusion-type equation on the entire real line. Explicit transformations are used to reduce the equations under study to their corresponding standard forms emphasizing on natural relations with certain Riccati(and/or Ermakov)-type systems. These relations give solvability results for the Cauchy problem of the parabolic equation considered. The superposition principle allows to solve formally this problem from an unconventional point of view. An eigenfunction expansion approach is also considered for this general evolution equation. Examples considered to corroborate the efficacy of the proposed solution methods include the Fokker-Planck equation, the Black-Scholes model and the one-factor Gaussian Hull-White model. The results obtained in the first part are used to solve the Cauchy initial value problem for certain inhomogeneous Burgers-type equation. The connection between linear (the Diffusion-type) and nonlinear (Burgers-type) parabolic equations is stress in order to establish a strong commutative relation. Traveling wave solutions of a nonautonomous Burgers equation are also investigated. Finally, it is constructed explicitly the minimum-uncertainty squeezed states for quantum harmonic oscillators. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. It is shown that the product of the variances attains the required minimum value only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. Such explicit construction is possible due to the relation between the diffusion-type equation studied in the first part and the time-dependent Schrodinger equation. A modication of the radiation field operators for squeezed photons in a perfect cavity is also suggested with the help of a nonstandard solution of Heisenberg's equation of motion.

Contributors

Agent

Created

Date Created
2013