Matching Items (33)

Biomedical Engineering Workforce Competencies for 21st Century Healthcare Technology Product Development Teams: A BME Student Cohort Perspective

Description

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of

The importance of efficient design and development teams in in 21st century is evident after the compressive literate review was performed to digest various aspects of benefits and foundation of teamwork. Although teamwork may have variety of applications in many different industries, the new emerging biomedical engineering is growing significantly using principles of teamwork. Studying attributes and mechanism of creating successful biomedical engineering teams may even contribute more to the fast paste growth of this industry. In comprehensive literate review performed, general importance of teamwork was studied. Also specific hard and soft attributes which may contribute to teamwork was studied. Currently, there are number of general assessment tools which assists managements in industry and academia to systematically bring qualified people together to flourish their talents and skills as members of a biomedical engineering teams. These assessment tools, although are useful, but are not comprehensive, incorporating literature review attributes, and also doesn't not contain student perspective who have experience as being part of a design and development team. Although there are many scientific researches and papers designated to this matter, but there is no study which purposefully studies development of an assessment tool which is designated to biomedical engineering workforce and is constructed of both literature, current assessment tools, and also student perspective. It is hypothesized that a more comprehensive composite assessment tool that incorporate both soft and hard team attributes from a combined professional and student perspective could be implemented in the development of successful Biomedical Engineering Design and Development teams and subsequently used in 21st century workforce.

Contributors

Agent

Created

Date Created
  • 2017-05

131110-Thumbnail Image.png

Understanding the Changes in the Regulation of Homeopathic Products in the United States and the Possible Impacts of These Changes

Description

Homeopathy is a brand of alternative medicine that has enjoyed a unique form of regulation for many years. This work aims to understand the regulation of homeopathic drugs in the

Homeopathy is a brand of alternative medicine that has enjoyed a unique form of regulation for many years. This work aims to understand the regulation of homeopathic drugs in the United States by performing a literature review focused on three fronts: (i) homeopathy (theory, history in the United States and criticisms), (ii) U.S Food and Drug Administration (history and relationship to homeopathy), and (iii) interpretation of the law through reading guidance documents and the Code of Federal Regulations.
In 2015, the FDA began a process to reevaluate and update the regulations surrounding homeopathic products to better fit their present risk-based model. Past regulations were set in 1938; and as the world evolved, these have been found to set inadequate standards. By reviewing the agency’s guidance drafts and core regulatory documents, we come to understand that these changes are motivated by a desire for homeopathic remedies to follow high standards that apply to other products for the benefit of the U.S. consumers. FDA has made significant advances by proposing new Guidances on homeopathic products, listening to homeopathic community and consumers, and withdrawing the Compliance Policy Guide 400.400 issued in 1988.
We recommend for homeopathic manufacturers and practitioners to see the FDA as an ally and cooperate fully with the proposed changes for the regulation the agency gives out. Doing so will give the homeopathic community the best chance at continuing to sell their products and reach their consumers in the United States. In the same token, the FDA should do their best to involve homeopathic professionals in some way in this regulatory process, to encourage participation and compliance by the broader homeopathic community. Doing so ensures a climate of teamwork among different facets of the medical community in the United States.

Contributors

Agent

Created

Date Created
  • 2020-05

136008-Thumbnail Image.png

The Development of a Simplified and Integrated Glucose-Monitoring Biosensor for Diabetics

Description

Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity

Self-monitoring of blood glucose (SMBG) is the standard of care in diabetes management. Current technologies for SMBG are based upon enzymatic electrochemical (amperometric) sensing. To increase the sensitivity and specificity of current devices, a novel method of detecting glucose using electrochemical impedance spectroscopy (EIS) technology is explored. To test the ability of EIS methods to detect glucose, the enzyme glucose oxidase (GOx) was fixed to gold electrodes through the means of a specific immobilization process. Once GOx was fixed to the gold electrode surface, a 5 mV sine wave sweeping frequencies from 100 kHz to 1 Hz was induced at a glucose range 0-500 mg/dL mixed with a ferricyanide redox mediator. Each frequency in the impedance sweep was analyzed for highest response and R-squared value. The frequency with both factors optimized is specific for the glucose-GOx binding interaction, and was determined to be 1.17 kHz in purified solutions. Four separate electrodes were constructed and date from each were averaged. The correlation between the impedance response and concentration at the low range of detection (0-100 mg/dL of gluose) was determined to be 3.19 ohm/ln (mg/dL) with an R-squared value of 0.86. Its associated lower limit of detection was found to be 41 mg/dL. The same frequency of 1.17 kHz was then verified in whole blood under the glucose range of 0-100 mg/dL while diluting the blood to observe effect. As the blood concentration increased, the response of the sensor decreased logarithmically. The maximized blood detection volume was determined to be 25% whole blood suggesting dilution, coatings, or filtration is required for future adaptation. The above data confirms that EIS offers a new method of glucose detection as an alternative technology for SMBG and offers improved detection at lower concentrations of glucose. The unique frequency response of individual markers allows for modulation of signals so that several markers could be measured with a single sensor. Future work includes assessment of other diabetes associated biomarkers that can be measured on a single sensor, integration testing and tuning of the biomarkers, impedance-time sensing development, and finally, testing on control subjects.

Contributors

Agent

Created

Date Created
  • 2012-05

131768-Thumbnail Image.png

Targeted Delivery of Antibiotics to Skin Infections via Hydrogel Band-Aids to Reduce Adverse Side Effects: A Study

Description

The aim of the present study was to review the symptoms and current treatment options of the most common skin infections seen in outpatient settings and develop a preliminary alternative

The aim of the present study was to review the symptoms and current treatment options of the most common skin infections seen in outpatient settings and develop a preliminary alternative treatment solution. The specific skin infections evaluated were those caused by Staphylococcus and Streptococcus bacterial species, and are frequently treated with a wide variety of systemic antibiotics or topical ointments. Systemic antibiotics have shown increased occurrence of adverse side effects as well as the development of antibiotic-resistant bacteria. Additionally, these medications are usually overprescribed, which may further exacerbate negative side effects. Another issue that is addressed is the development of infections following treatment of a new laceration or other trauma to the skin. A patient may be treated for their wound with stitches or another alternative, but there is still the possibility of developing an infection later.
This study synthesizes information found from extensive research and provides a review of the most optimal techniques for developing an alternative to systemic antibiotics. The final deliverable is a report detailing the significant findings and discussing the ways that this solution may be developed further and implemented in a clinical setting. The solution is a hydrogel bandage designed to deliver antibiotics directly to the wound site, while also offering protection and enhanced wound healing. The target population is patients suffering from skin conditions in an outpatient setting. The antibiotics of interest for this solution are clindamycin, doxycycline, and trimethoprim-sulfamethoxazole (co-trimoxazole), as they offer excellent treatment against gram-positive bacteria and methicillin-resistant Staphylococcus aureus. However, other broad-spectrum antibiotics could potentially be incorporated to protect against gram-negative bacteria. The design features a polyvinyl alcohol (PVA) hydrogel that has shown many properties that are beneficial to biomedical applications, including biocompatibility, flexibility, high drug-loading capacity, high absorption of wound exudate, increased promotion of wound healing, and more. Preliminary mathematical models of the hydrogel’s drug delivery behaviors are also included. Due to the scope and timeframe of this project, the majority of findings herein are based on research of prior literature instead of development of the novel device. Future directions would include further research and development of the mechanisms behind the device, creation of a physical prototype, experimental testing, and statistical analyses to verify device specifications and capabilities.

Contributors

Agent

Created

Date Created
  • 2020-05

131779-Thumbnail Image.png

Incorporating Exosomes into an Electrospun Scaffold

Description

This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with

This thesis aims to incorporate exosomes into an electrospun scaffold for tissue engineering applications. The motivation for this work is to develop an implant to regenerate tissue for patients with laryngeal defects. It was determined that it is feasible to incorporate exosomes into an electrospun scaffold. This addition of exosomes does alter the scaffold properties, by decreasing the average fiber diameter by roughly a factor of three and increasing the average modulus by roughly a factor of two. Cells were cultured on a scaffold with exosomes incorporated and were found to proliferate more than on a scaffold alone. This research lays the groundwork for further developing and optimizing an electrospun scaffold with exosomes incorporated to elicit a tissue regenerative response.

Contributors

Agent

Created

Date Created
  • 2020-05

131702-Thumbnail Image.png

Introduction of Medical Devices Using Adaptive Machine Learning Algorithms for Artificial Intelligence in the Healthcare Market

Description

The adaptive artificial-intelligence (AI) medical device industry is a novel industry in the United States offering innovations to the healthcare field. The rapid expansion of this industry in recent years

The adaptive artificial-intelligence (AI) medical device industry is a novel industry in the United States offering innovations to the healthcare field. The rapid expansion of this industry in recent years has drawn attention from multiple stakeholders causing a heated debate about how to introduce these innovations into the market while maintaining patient safety and treatment efficacy. Since early 2019, the U.S. Food and Drug Administration (FDA) has been releasing statements in regards to the improvement of regulation for this new technology, but has yet to take further actions. Dilemmas including 1) a difficult regulatory process, 2) a heightening financial burden and 3) looming liability issues, are reasons adaptive AI medical devices have struggled to be advanced. By conducting a thorough analysis of these 3 issues, recognizing the intricacies of them separately and together, this study develops a better understanding of the landscape adaptive AI technology is facing and provides a clearer picture for the future of the industry.

Contributors

Agent

Created

Date Created
  • 2020-05

131543-Thumbnail Image.png

Fabrication and Characterization of a 3D Printed and Electrospun Hybrid Scaffold for Regenerative Medicine

Description

Tissue engineering scaffold fabrication methods often have tradeoffs associated with them that prevent one method from fulfilling all design requirements of a desired scaffold. This undergraduate thesis seeks to combine

Tissue engineering scaffold fabrication methods often have tradeoffs associated with them that prevent one method from fulfilling all design requirements of a desired scaffold. This undergraduate thesis seeks to combine 3D printing and electrospinning tissue engineering fabrication methods into a hybrid fabrication method that can potentially fulfill more design requirements than each method alone. The hybrid scaffolds were made by inserting electrospun scaffolds between layers of 3D printed scaffolds of increasing print temperature and effects on adhesion and mechanical properties were characterized. The fabrication method proved to be feasible and print temperature affected both adhesion and mechanical properties of the scaffolds. A positive, non-linear relationship was seen between print temperature and adhesion and resulting force. Insertion of electrospun mats led to increased damping of scaffolds. Evidence from characterization indicated factors other than print temperature were likely contributing to adhesion and mechanical properties. If studied further, this fabrication method could potentially be used to improve overall structure and regenerative potential of tissue engineering scaffolds.

Contributors

Agent

Created

Date Created
  • 2020-05

135280-Thumbnail Image.png

Heart Rate Variability and Electrocardiography in Evaluating Stress

Description

Chronic stress has been linked as a probable contributor to a number of health problems that plague the world today. Obesity, cardiovascular disease, depression, and osteoporosis are all common health

Chronic stress has been linked as a probable contributor to a number of health problems that plague the world today. Obesity, cardiovascular disease, depression, and osteoporosis are all common health risks believed to be exacerbated by stress. While it is nether realistic nor desirable to completely eliminate stress in an individual, proper stress management is important to a healthy lifestyle. Homeostasis is the primary mechanism by which stress, and the stress response, should be analyzed. Environmental factors known as stressors elicit responses from the body, which can be measured in terms of duration and magnitude. These two factors determine the homeostatic response from the body. This thesis proposes the study of heart rate variability (HRV) to measure the response of the autonomic nervous system through time domain analysis (the length of interbeat intervals) and frequency domain analysis (the differences between the lengths of consecutive interbeat intervals). Even with many possible problems, this data still represents valuable proof of concept that HRV analysis may be of use in identifying stress.

Contributors

Agent

Created

Date Created
  • 2012-05

147647-Thumbnail Image.png

Deep Learning Application to Improve Quality of Life in Diabetes

Description

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to

Carbohydrate counting has been shown to improve HbA1c levels for people with diabetes. However, the learning curve and inconvenience of carbohydrate counting make it difficult for patients to adhere to it. A deep learning model is proposed to identify food from an image, where it can help the user manage their carbohydrate counting. This early model has a 68.3% accuracy of identifying 101 different food classes. A more refined model in future work could be deployed into a mobile application to identify food the user is about to consume and log it for easier carbohydrate counting.

Contributors

Agent

Created

Date Created
  • 2021-05

137648-Thumbnail Image.png

Camp Hope: Defending a Student-Centered Model for Improving Education in the Foster Care Community & Abroad

Description

Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems

Camp Hope is an organization dedicated to motivating children in foster care to pursue higher education. In this paper, the organization's founder applies the engineering design process to the problems currently facing Arizona's foster care system. What emerges is Camp Hope (i.e. the "product") and in turn a model by which it can be promulgated throughout the Phoenix metropolitan area and abroad. Prototype camps held abroad in Mexico, and at local group homes in Tempe, Arizona verify the initial user inputs with 68% of campers reporting new academic interests in pre/post camp surveys. Future work includes continued fine-tuning of the model through continued Arizona camps, and longer-term surveys tracking the development of children who participate in the program.

Contributors

Agent

Created

Date Created
  • 2013-05