Matching Items (130)
136129-Thumbnail Image.png
Description
As part of a United States-Australian Solar Energy Collaboration on a Micro Urban Solar Integrated Concentrator project, the purpose of the research was to design and build a bench-top apparatus of a solar power concentrator thermal storage unit. This prototype would serve to be a test apparatus for testing

As part of a United States-Australian Solar Energy Collaboration on a Micro Urban Solar Integrated Concentrator project, the purpose of the research was to design and build a bench-top apparatus of a solar power concentrator thermal storage unit. This prototype would serve to be a test apparatus for testing multiple thermal storage mediums and heat transfer fluids for verification and optimization of the larger system. The initial temperature range for the system to test a wide variety of thermal storage mediums was 100°C to 400°C. As for the thermal storage volume it was decided that the team would need to test volumes of about 100 mL. These design parameters later changed to a smaller range for the initial prototype apparatus. This temperature range was decided to be 210°C to 240°C using tin as a phase change material (PCM). It was also decided a low temperature (<100°C) test using paraffin as the PCM would be beneficial for troubleshooting purposes.
ContributorsLee, William John (Author) / Phelan, Patrick (Thesis director) / Wang, Robert (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / School of International Letters and Cultures (Contributor)
Created2015-05
132814-Thumbnail Image.png
Description
Current applications of the traditional vapor-compression refrigeration system are not feasible. Space cooling and refrigeration systems that employ vapor-compression refrigeration cycles utilize harmful refrigerants, produce large amounts of carbon dioxide, and have high energy consumption. Adsorption cooling technology is seen as a possible alternative to traditional vapor-compression refrigeration systems. The

Current applications of the traditional vapor-compression refrigeration system are not feasible. Space cooling and refrigeration systems that employ vapor-compression refrigeration cycles utilize harmful refrigerants, produce large amounts of carbon dioxide, and have high energy consumption. Adsorption cooling technology is seen as a possible alternative to traditional vapor-compression refrigeration systems. The low-grade heat requirement and eco-friendly adsorbent and refrigerant materials make adsorption cooling an attractive technology. Adsorption cooling technology employs the adsorption principle—the phenomenon in which an adsorbate fluid adheres to the surfaces and micropores of an adsorbent solid. The purpose of this study was to explore the adsorption cooling process through the use of a prototype adsorption test bed design. A basic intermittent adsorption cooling cycle was utilized for the test bed design. Several requirements for the design include low-cost, simple fabrication, and capable of holding a vacuum. In this study, an experiment was carried out to analyze the desorption process, in which the original weight of adsorbed water was compared to the weight of the desorbed water. The system pressure was decreased to sub-atmospheric absolute pressure of 16.67 kPa in order to increase the desorption rate and drive the desorption process. A hot water pump provided 81.6 °C hot water to heat the adsorption bed. The desorption process lasted for a duration of 162 minutes. The experiment resulted in 3.60 g (16.04%) of the initial adsorbed water being desorbed during the desorption process. The study demonstrates the potential of adsorption cooling. This paper outlines the design, fabrication, and analysis of a prototype adsorption cooling test bed.
Created2019-05
137297-Thumbnail Image.png
Description
Solar cells are an increasingly important energy source for meeting growing energy demands. Organic photovoltaics in particular have potential in this area due to their low cost and the relative abundance of their constituents. One concern with the inverted configuration (a type of OPV with increased long-term stability) is their

Solar cells are an increasingly important energy source for meeting growing energy demands. Organic photovoltaics in particular have potential in this area due to their low cost and the relative abundance of their constituents. One concern with the inverted configuration (a type of OPV with increased long-term stability) is their reliance on activation by ultraviolet (UV) light. Here we examine the incorporation of a new electron transport layer (ETL) material, zinc tin oxide (ZTO), in order to assess its interaction with UV light. Current-voltage characteristics were analyzed using a 420 nm cutoff filter to control UV light exposure. ZTO proved to be an adequate alternative to ZnO when comparing photovoltaic response. However, no improvement was found in terms of UV light activation. In addition, recent works show that oxygen plasma treatment of metal oxides used for hole transport layers modifies the work function and yields higher efficiency devices. Spin cast benzyl phosphonic acid self-assembled monolayers (BPA SAMs) provide similar results without the need for plasma treatment. Here we examine the use of BPA SAMs in standard devices utilizing PV2000, a proprietary active layer blend made by Plextronics. The use of BPA SAMs on a nickel oxide hole transport layer deepened the work function significantly, yielding greater device performance.
ContributorsJackson, Skyler (Author) / Phelan, Patrick (Thesis director) / Gust, Devans (Committee member) / Barrett, The Honors College (Contributor)
Created2014-05
134422-Thumbnail Image.png
Description
The goal of this honors thesis creative project was to design, manufacture and test a retrofitted E-bike kit that met certain stated design objections. To design a successful E-bike kit, the needs of the customer were researched and turned into measurable engineering requirements. For the biker, these requirements are speed,

The goal of this honors thesis creative project was to design, manufacture and test a retrofitted E-bike kit that met certain stated design objections. To design a successful E-bike kit, the needs of the customer were researched and turned into measurable engineering requirements. For the biker, these requirements are speed, range, cost and simplicity. The approach is outlined similarly to the capstone program here at ASU. There is an introduction in sections 1 and 2 which gives the motivation and an overview of the project done. In section 3, the voice of the customer is discussed and converted into requirements. In sections 4, 5,6,7 and 8 the design process is described. Section 4 is the conceptual design where multiple concepts are narrowed down to one design. Section 5 is the preliminary design, where the design parts are specified and optimized to fit requirements. Section 6 is fabrication and assembly which gives details into how the product was manufactured and built. Sections 7 and 8 are the testing and validation sections where tests were carried out to verify that the requirements were met. Sections 9 and 10 were part of the conclusion in which recommendations and the project conclusions are depicted. In general, I produced a successful prototype. Each phase of the design came with its own issues and solutions but in the end a functioning bike was delivered. There were a few design options considered before selecting the final design. The rear-drive friction design was selected based on its price, simplicity and performance. The design was optimized in the preliminary design phase and items were purchased. The purchased items were either placed on the bike directly or had to be manufactured in some way. Once the assembly was completed, testing and validation took place to verify that the design met the requirements. Unfortunately, the prototype did not meet all the requirements. The E-bike had a maximum speed of 14.86 mph and a range of 12.75 miles which were below the performance requirements of 15 mph and 15 miles. The cost was $41.67 over the goal of $300 although the total costs remained under budget. At the end of the project, I delivered a functioning E-bike retrofitting kit on the day of the defense. While it did not meet the requirements fully, there was much room for improvement and optimization within the design.
ContributorsLangerman, Jonathon Henry (Author) / Phelan, Patrick (Thesis director) / Trimble, Steven (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132900-Thumbnail Image.png
Description
Photovoltaic panels are commonly used for their versatility in on-site generation of clean electricity in urban environments, specifically on rooftops. However, their implementation on rooftops poses potential (positive and negative) impacts on the energy use of buildings, and urban climates. The negative impacts are compounded if PV is installed on

Photovoltaic panels are commonly used for their versatility in on-site generation of clean electricity in urban environments, specifically on rooftops. However, their implementation on rooftops poses potential (positive and negative) impacts on the energy use of buildings, and urban climates. The negative impacts are compounded if PV is installed on top of a high-albedo rooftop. This study quantitively investigates these impacts from PV installation on top of a building with a white roof in Phoenix, AZ. We supplemented our measurements with EnergyPlus simulations to model the energy implications for archetypical residential and retail buildings and calculated the energy penalty to generation ratio as well as sensible heat flux for each combination of panel height and building type. Results indicate that the daily cooling energy penalty to due blockage of outgoing longwave radiation can be 4.9—11.2% of the PV generation. In addition, while we observed a small decrease in nighttime sensible heat flux to the ambient, PV cases increased the daytime heat flux by more than a factor of 10. This study highlights the potential unintended consequences of rooftop PV under certain conditions and provides a broader perspective for building designers and urban planners.
ContributorsBrown, Kyle (Author) / Sailor, David (Thesis director) / Phelan, Patrick (Committee member) / Department of Physics (Contributor) / Dean, W.P. Carey School of Business (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133434-Thumbnail Image.png
Description
Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery

Solar panels need to be both cost effective and environmentally friendly to compete with traditional energy forms. Photovoltaic recycling has the potential to mitigate the harm of waste, which is often landfilled, while putting material back into the manufacturing process. Out of many, three methods show much promise: Full Recovery End-of-Life Photovoltaic (FRELP), mechanical, and sintering-based recycling. FRELP recycling has quickly gained prominence in Europe and promises to fully recover the components in a solar cell. The mechanical method has produced high yields of valuable materials using basic and inexpensive processes. The sintering method has the potential to tap into a large market for feldspar. Using a levelized cost of electricity (LCOE) analysis, the three methods could be compared on an economic basis. This showed that the mechanical method is least expensive, and the sintering method is the most expensive. Using this model, all recycling methods are less cost effective than the control analysis without recycling. Sensitivity analyses were then done on the effect of the discount rate, capacity factor, and lifespan on the LCOE. These results showed that the change in capacity factor had the most significant effect on the levelized cost of electricity. A final sensitivity analysis was done based on the decreased installation and balance of systems costs in 2025. With a 55% decrease in these costs, the LCOE decreased by close to $0.03/kWh for each method. Based on these results, the cost of each recycling method would be a more considerable proportion of the overall LCOE of the solar farm.
ContributorsMeister, William Frederick (Author) / Goodnick, Stephen (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134341-Thumbnail Image.png
Description
As single junction silicon based solar cells approach their Shockley\u2014Queasier (SQ) conversion efficiency limits, tandem solar cells (TSC) provide an attractive prospect for higher efficiency cells. Although TSCs have been shown to be more efficient, their higher fabrication costs are a limiting factor for their economic competitiveness and large-scale integration

As single junction silicon based solar cells approach their Shockley\u2014Queasier (SQ) conversion efficiency limits, tandem solar cells (TSC) provide an attractive prospect for higher efficiency cells. Although TSCs have been shown to be more efficient, their higher fabrication costs are a limiting factor for their economic competitiveness and large-scale integration in PV power systems. Current literature suggests that even with reduced costs of fabrication in the future, TSCs still offer no competitive benefit for integration in utility-scale systems and may yield minimal benefits only in places where area-related costs are high. This work investigates Balance of Systems (BoS) circumstances under which TSCs can attain economic viability in scenarios where the necessary technological advances are made to increase the efficiency of solar cells beyond the SQ limit.
ContributorsMugwisi, Ngoni (Author) / Holman, Zachary (Thesis director) / Phelan, Patrick (Committee member) / Industrial, Systems (Contributor) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134366-Thumbnail Image.png
Description
This paper presents an experimental investigation into the effects of altering electrode surface area roughness on thermogalvanic cell performance. A temperature difference between two electrodes was induced and brought to steady state to achieve a difference of around 50 °C, which was maintained with a DC power generated hot wire

This paper presents an experimental investigation into the effects of altering electrode surface area roughness on thermogalvanic cell performance. A temperature difference between two electrodes was induced and brought to steady state to achieve a difference of around 50 °C, which was maintained with a DC power generated hot wire and a pumped ice bath. The open-circuit voltage values at steady-state were measured by a programed multimeter and the temperatures were measured by a series of type K thermocouples. Electrode surface area roughness was altered using different grit values of sandpaper and measuring the values using a Zescope Optical Profilometer. Once three different surface area average values were achieved, 6 trials were performed with 2 trials per roughness value. The results were tabulated in Section 4 of this report.
It was predicted that increasing the surface area roughness would increase the number of electrons present in the reduction oxidation reaction and decrease the activation resistance of the thermogalvanic system. Decreasing the activation resistance, a component of total internal resistance, would therefore increase the power output of the cell by a small magnitude. The results showed that changing the surface area roughness of the Copper electrodes evidently had no effect on the outputs of the cell system. Additionally, the Seebeck coefficient was also unaffected by the presence of increased surface area roughness.
The work presented in the following paper is part of a continuing effort to better understand the performance of thermogalvanic cells and their heat to electrical energy transfer properties.
ContributorsLopez, Maggie Marie (Author) / Phelan, Patrick (Thesis director) / Miner, Mark (Committee member) / School of Sustainability (Contributor) / School of Music (Contributor) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
132998-Thumbnail Image.png
Description
The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed

The research analyzes the transformation of wasted thermal energy into a usable form through thermogalvanic devices. This technology helps mitigate international growing energy demands. Building energy efficiency is a critical research topic, since the loads account for 40% of all energy demand in developed nations, and 30% in less developed nations. A significant portion of the energy consumed for heating and cooling, where a majority is dissipated to the ambient as waste heat. This research answers how much power output (µW·cm-2) can the thermogalvanic brick experimentally produce from an induced temperature gradient? While there are multiple avenues for the initial and optimized prototype design, one key area of interest relating to thermogalvanic devices is the effective surface area of the electrodes. This report highlights the experimental power output measurements of a Cu/Cu2+ thermogalvanic brick by manipulating the effective surface area of the electrodes. Across three meshes, the maximum power output normalized for temperature was found to be between 2.13-2.87 x 10-3 μWcm-2K-2. The highest normalized power output corresponded to the mesh with the highest effective surface area, which was classified as the fine mesh. This intuitively aligned with the theoretical understanding of surface area and maximum power output, where decreasing the activation resistance also reduces the internal resistance, which increases the theoretical maximum power.
ContributorsKiracofe, Ryan Moore (Author) / Phelan, Patrick (Thesis director) / El Asmar, Mounir (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135140-Thumbnail Image.png
Description
Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and

Concentrated Solar Power and Thermal Energy Storage are two technologies that are currently being explored as environmentally friendly methods of energy generation. The two technologies are often combined in an overall system to increase efficiency and reliability of the energy generation system. A collaborative group of researchers from Australia and the United States formed a project to design solar concentrators that utilize Concentrated Solar Power and Thermal Energy Storage. The collaborators from Arizona State designed a Latent Heat Thermal Energy Storage system for the project. It was initially proposed that the system utilize Dowtherm A as the Heat Transfer Fluid and a tin alloy as the storage material. Two thermal reservoirs were designed as part of the system; one reservoir was designed to be maintained at 240˚ C, while the other reservoir was designed to be maintained at 210˚ C. The tin was designed to receive heat from the hot reservoir during a charging cycle and discharge heat to the cold reservoir during a discharge cycle. From simulation, it was estimated that the system would complete a charging cycle in 17.5 minutes and a discharging cycle in 6.667 minutes [1]. After the initial design was fabricated and assembled, the system proved ineffective and did not perform as expected. Leaks occurred within the system under high pressure and the reservoirs could not be heated to the desired temperatures. After adding a flange to one of the reservoirs, it was decided that the system would be run with one reservoir, with water as the Heat Transfer Fluid. The storage material was changed to paraffin wax, because it would achieve phase change at a temperature lower than the boiling point of water. Since only one reservoir was available, charging cycle tests were performed on the system to gain insight on system performance. It was found that the paraffin sample only absorbs 3.29% of the available heat present during a charging cycle. This report discusses the tests performed on the system, the analysis of the data from these tests, the issues with the system that were revealed from the analyses, and potential design changes that would increase the efficiency of the system.
ContributorsKocher, Jordan Daniel (Author) / Wang, Robert (Thesis director) / Phelan, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12