Matching Items (2)
152265-Thumbnail Image.png
Description
Infertility has become an increasing problem in developed countries and in many cases can be attributed to compromised sperm quality. Assessment of male fertility typically utilizes semen analysis which mainly examines sperm morphology, however many males whose sperm appear normal are sub- or infertile, suggesting that sperm from these males

Infertility has become an increasing problem in developed countries and in many cases can be attributed to compromised sperm quality. Assessment of male fertility typically utilizes semen analysis which mainly examines sperm morphology, however many males whose sperm appear normal are sub- or infertile, suggesting that sperm from these males may be deficient in a protein or suite of proteins. To date, very little is known about the composition of sperm or the complex maturation process that confers motility and fertilization competency to sperm. Chapter 1 discusses the use of whole cell mass spectrometry to identify 1247 proteins comprising the Rhesus macaque (Macaca mulatta) sperm proteome, a commonly used model of human reproduction. This study provides a more robust proxy of human sperm composition than was previously available and facilitates studies of sperm using the rhesus macaque as a model. Chapters 2 & 3 provide a systems level overview of changes in sperm proteome composition that occurs during epididymal transit. Chapter 2 reports the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. Chapter 3 reports the sperm proteome from four distinct segments of the Rhesus macaque epididymis, including the caput, proximal corpus, distal corpus and cauda, identifying 1951, 2014, 1764 and 1423 proteins respectively. These studies identify a number of proteins that are added and removed from sperm during epididymal transit which likely play an important role in the sperm maturation process. To date no comparative evolutionary studies of sperm proteomes have been undertaken. Chapter 4 compares four mammalian sperm proteomes including the human, macaque, mouse and rat. This study identified 98 proteins common to all four sperm proteomes, 82 primate and 90 rodent lineage-specific proteins and 494, 467, 566, and 193 species specific proteins in the human, macaque, mouse and rat sperm proteomes respectively and discusses how differences in sperm composition may ultimately lead to functional differences across species. Finally, chapter 5 uses sperm proteome data to inform the preliminary design of a rodent contraceptive vaccine delivered orally using recombinant attenuated Salmonella vaccine vectors.
ContributorsSkerget, Sheri Jo (Author) / Karr, Timothy L. (Thesis advisor) / Lake, Douglas (Committee member) / Petritis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
128765-Thumbnail Image.png
Description

In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes

In mammals, transit through the epididymis, which involves the acquisition, loss and modification of proteins, is required to confer motility and fertilization competency to sperm. The overall dynamics of maturation is poorly understood, and a systems level understanding of the complex maturation process will provide valuable new information about changes occurring during epididymal transport. We report the proteomes of sperm collected from the caput, corpus and cauda segments of the mouse epididymis, identifying 1536, 1720 and 1234 proteins respectively. This study identified 765 proteins that are present in sperm obtained from all three segments. We identified 1766 proteins that are potentially added (732) or removed (1034) from sperm during epididymal transit. Phenotypic analyses of the caput, corpus and cauda sperm proteomes identified 60 proteins that have known sperm phenotypes when mutated, or absent from sperm. Our analysis indicates that as much as one-third of proteins with known sperm phenotypes are added to sperm during epididymal transit. GO analyses revealed that cauda sperm are enriched for specific functions including sperm-egg recognition and motility, consistent with the observation that sperm acquire motility and fertilization competency during transit through the epididymis. In addition, GO analyses revealed that the immunity protein profile of sperm changes during sperm maturation. Finally, we identified components of the 26S proteasome, the immunoproteasome, and a proteasome activator in mature sperm.

Created2015-11-10