Matching Items (2)
Filtering by

Clear all filters

Description

Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition

Climate change will result in reduced soil water availability in much of the world either due to changes in precipitation or increased temperature and evapotranspiration. How communities of mites and nematodes may respond to changes in moisture availability is not well known, yet these organisms play important roles in decomposition and nutrient cycling processes. We determined how communities of these organisms respond to changes in moisture availability and whether common patterns occur along fine-scale gradients of soil moisture within four individual ecosystem types (mesic, xeric and arid grasslands and a polar desert) located in the western United States and Antarctica, as well as across a cross-ecosystem moisture gradient (CEMG) of all four ecosystems considered together.

An elevation transect of three sampling plots was monitored within each ecosystem and soil samples were collected from these plots and from existing experimental precipitation manipulations within each ecosystem once in fall of 2009 and three times each in 2010 and 2011. Mites and nematodes were sorted to trophic groups and analyzed to determine community responses to changes in soil moisture availability. We found that while both mites and nematodes increased with available soil moisture across the CEMG, within individual ecosystems, increases in soil moisture resulted in decreases to nematode communities at all but the arid grassland ecosystem; mites showed no responses at any ecosystem. In addition, we found changes in proportional abundances of mite and nematode trophic groups as soil moisture increased within individual ecosystems, which may result in shifts within soil food webs with important consequences for ecosystem functioning. We suggest that communities of soil animals at local scales may respond predictably to changes in moisture availability regardless of ecosystem type but that additional factors, such as climate variability, vegetation composition, and soil properties may influence this relationship over larger scales.

ContributorsSylvain, Zachary A. (Author) / Wall, Diana H. (Author) / Cherwin, Karie L. (Author) / Peters, Debra P. C. (Author) / Reichmann, Lara G. (Author) / Sala, Osvaldo (Author) / College of Liberal Arts and Sciences (Contributor)
Created2014-08-01
129149-Thumbnail Image.png
Description

Climate change will result in increased precipitation variability with more extreme events reflected in more frequent droughts as well as more frequent extremely wet conditions. The increase in precipitation variability will occur at different temporal scales from intra to inter-annual and even longer scales. At the intra-annual scale, extreme precipitation

Climate change will result in increased precipitation variability with more extreme events reflected in more frequent droughts as well as more frequent extremely wet conditions. The increase in precipitation variability will occur at different temporal scales from intra to inter-annual and even longer scales. At the intra-annual scale, extreme precipitation events will be interspersed with prolonged periods in between events. At the inter-annual scale, dry years or multi-year droughts will be combined with wet years or multi-year wet conditions. Consequences of this aspect of climate change for the functioning ecosystems and their ability to provide ecosystem services have been underexplored. We used a process-based ecosystem model to simulate water losses and soil-water availability at 35 grassland locations in the central US under 4 levels of precipitation variability (control, +25, +50 + 75 %) and six temporal scales ranging from intra- to multi-annual variability.

We show that the scale of temporal variability had a larger effect on soil-water availability than the magnitude of variability, and that inter- and multi-annual variability had much larger effects than intra-annual variability. Further, the effect of precipitation variability was modulated by mean annual precipitation. Arid-semiarid locations receiving less than about 380 mm yr-1 mean annual precipitation showed increases in water availability as a result of enhanced precipitation variability while more mesic locations (>380 mm yr-1) showed a decrease in soil water availability. The beneficial effects of enhanced variability in arid-semiarid regions resulted from a deepening of the soil-water availability profile and a reduction in bare soil evaporation. The deepening of the soil-water availability profile resulting from increase precipitation variability may promote future shifts in species composition and dominance to deeper-rooted woody plants for ecosystems that are susceptible to state changes. The break point, which has a mean of 380-mm with a range between 440 and 350 mm, is remarkably similar to the 370-mm threshold of the inverse texture hypothesis, below which coarse-texture soils had higher productivity than fine-textured soils.

ContributorsSala, Osvaldo (Author) / Gherardi Arbizu, Laureano (Author) / Peters, Debra P. C. (Author) / College of Liberal Arts and Sciences (Contributor)
Created2015-07-01