Matching Items (14)

152703-Thumbnail Image.png

Peak travel in a megacity: exploring the role of infrastructure saturation on the suppression of automobile use

Description

Contrary to many previous travel demand forecasts there is increasing evidence that vehicle travel in developed countries may be peaking. The underlying causes of this peaking are still under much

Contrary to many previous travel demand forecasts there is increasing evidence that vehicle travel in developed countries may be peaking. The underlying causes of this peaking are still under much debate and there has been a mobilization of research, largely focused at the national scale, to study the explanatory drivers but research focused at the metropolitan scale, where transportation policy and planning are frequently decided, is relatively thin. Additionally, a majority of this research has focused on changes within the activity system without considering the impact transportation infrastructure has on overall travel demand. Using Los Angeles County California, we investigate Peak Car and whether the saturation of automobile infrastructure, in addition to societal and economic factors, may be a suppressing factor. After peaking in 2002, vehicle travel in Los Angeles County in 2010 was estimated at 78 billion and was 20.3 billion shy of projections made in 2002. The extent to which infrastructure saturation may contribute to Peak Car is evaluated by analyzing social and economic factors that may have impacted personal automobile usage over the last decade. This includes changing fuel prices, fuel economy, population growth, increased utilization of alternate transportation modes, changes in driver demographics , travel time and income levels. Summation of all assessed factors reveals there is at least some portion of the 20 billion VMT that is unexplained in all but the worst case scenario. We hypothesize that the unexplained remaining VMT may be explained by infrastructure supply constraints that result in suppression of travel. This finding has impacts on how we see the role of hard infrastructure systems in urban growth and we explore these impacts in the research.

Contributors

Agent

Created

Date Created
  • 2014

153221-Thumbnail Image.png

A tour level stop scheduling framework and a vehicle type choice model system for activity based travel forecasting

Description

This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in

This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in tour-based model systems in practice. Activity-based travel demand forecasting model systems in practice today are largely tour-based model systems that simulate individual daily activity-travel patterns through the prediction of day-level and tour-level activity agendas. These tour level activity-based models adopt a discrete time representation of activities and sequence the activities within tours using rule-based heuristics. An alternate stream of activity-based model systems mostly confined to the research arena are activity scheduling systems that adopt an evolutionary continuous-time approach to model activity participation subject to time-space prism constraints. In this research, a tour characterization framework capable of simulating and sequencing activities in tours along the continuous time dimension is developed and implemented using readily available travel survey data. The proposed framework includes components for modeling the multitude of secondary activities (stops) undertaken as part of the tour, the time allocated to various activities in a tour, and the sequence in which the activities are pursued.

Second, the dissertation focuses on the implementation of a vehicle fleet composition model component that can be used not only to simulate the mix of vehicle types owned by households but also to identify the specific vehicle that will be used for a specific tour. Virtually all of the activity-based models in practice only model the choice of mode without due consideration of the type of vehicle used on a tour. In this research effort, a comprehensive vehicle fleet composition model system is developed and implemented. In addition, a primary driver allocation model and a tour-level vehicle type choice model are developed and estimated with a view to advancing the ability to track household vehicle usage through the course of a day within activity-based travel model systems. It is envisioned that these advances will enhance the fidelity of activity-based travel model systems in practice.

Contributors

Agent

Created

Date Created
  • 2014

149519-Thumbnail Image.png

An assessment of stochastic variability and convergence characteristics in travel microsimulation models

Description

In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would

In the middle of the 20th century in the United States, transportation and infrastructure development became a priority on the national agenda, instigating the development of mathematical models that would predict transportation network performance. Approximately 40 years later, transportation planning models again became a national priority, this time instigating the development of highly disaggregate activity-based traffic models called microsimulations. These models predict the travel on a network at the level of the individual decision-maker, but do so with a large computational complexity and processing time requirement. The vast resources and steep learning curve required to integrate microsimulation models into the general transportation plan have deterred planning agencies from incorporating these tools. By researching the stochastic variability in the results of a microsimulation model with varying random number seeds, this paper evaluates the number of simulation trials necessary, and therefore the computational effort, for a planning agency to reach stable model outcomes. The microsimulation tool used to complete this research is the Transportation Analysis and Simulation System (TRANSIMS). The requirements for initiating a TRANSIMS simulation are described in the paper. Two analysis corridors are chosen in the Metropolitan Phoenix Area, and the roadway performance characteristics volume, vehicle-miles of travel, and vehicle-hours of travel are examined in each corridor under both congested and uncongested conditions. Both congested and uncongested simulations are completed in twenty trials, each with a unique random number seed. Performance measures are averaged for each trial, providing a distribution of average performance measures with which to test the stability of the system. The results of this research show that the variability in outcomes increases with increasing congestion. Although twenty trials are sufficient to achieve stable solutions for the uncongested state, convergence in the congested state is not achieved. These results indicate that a highly congested urban environment requires more than twenty simulation runs for each tested scenario before reaching a solution that can be assumed to be stable. The computational effort needed for this type of analysis is something that transportation planning agencies should take into consideration before beginning a traffic microsimulation program.

Contributors

Agent

Created

Date Created
  • 2010

149930-Thumbnail Image.png

Experience in data quality assessment on archived historical freeway traffic data

Description

Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood

Concern regarding the quality of traffic data exists among engineers and planners tasked with obtaining and using the data for various transportation applications. While data quality issues are often understood by analysts doing the hands on work, rarely are the quality characteristics of the data effectively communicated beyond the analyst. This research is an exercise in measuring and reporting data quality. The assessment was conducted to support the performance measurement program at the Maricopa Association of Governments in Phoenix, Arizona, and investigates the traffic data from 228 continuous monitoring freeway sensors in the metropolitan region. Results of the assessment provide an example of describing the quality of the traffic data with each of six data quality measures suggested in the literature, which are accuracy, completeness, validity, timeliness, coverage and accessibility. An important contribution is made in the use of data quality visualization tools. These visualization tools are used in evaluating the validity of the traffic data beyond pass/fail criteria commonly used. More significantly, they serve to educate an intuitive sense or understanding of the underlying characteristics of the data considered valid. Recommendations from the experience gained in this assessment include that data quality visualization tools be developed and used in the processing and quality control of traffic data, and that these visualization tools, along with other information on the quality control effort, be stored as metadata with the processed data.

Contributors

Agent

Created

Date Created
  • 2011

156680-Thumbnail Image.png

Sustainability assessment of community scale integrated energy systems: conceptual framework and applications

Description

One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In

One of the key infrastructures of any community or facility is the energy system which consists of utility power plants, distributed generation technologies, and building heating and cooling systems. In general, there are two dimensions to “sustainability” as it applies to an engineered system. It needs to be designed, operated, and managed such that its environmental impacts and costs are minimal (energy efficient design and operation), and also be designed and configured in a way that it is resilient in confronting disruptions posed by natural, manmade, or random events. In this regard, development of quantitative sustainability metrics in support of decision-making relevant to design, future growth planning, and day-to-day operation of such systems would be of great value. In this study, a pragmatic performance-based sustainability assessment framework and quantitative indices are developed towards this end whereby sustainability goals and concepts can be translated and integrated into engineering practices.

New quantitative sustainability indices are proposed to capture the energy system environmental impacts, economic performance, and resilience attributes, characterized by normalized environmental/health externalities, energy costs, and penalty costs respectively. A comprehensive Life Cycle Assessment is proposed which includes externalities due to emissions from different supply and demand-side energy systems specific to the regional power generation energy portfolio mix. An approach based on external costs, i.e. the monetized health and environmental impacts, was used to quantify adverse consequences associated with different energy system components.

Further, this thesis also proposes a new performance-based method for characterizing and assessing resilience of multi-functional demand-side engineered systems. Through modeling of system response to potential internal and external failures during different operational temporal periods reflective of diurnal variation in loads and services, the proposed methodology quantifies resilience of the system based on imposed penalty costs to the system stakeholders due to undelivered or interrupted services and/or non-optimal system performance.

A conceptual diagram called “Sustainability Compass” is also proposed which facilitates communicating the assessment results and allow better decision-analysis through illustration of different system attributes and trade-offs between different alternatives. The proposed methodologies have been illustrated using end-use monitored data for whole year operation of a university campus energy system.

Contributors

Agent

Created

Date Created
  • 2018

152208-Thumbnail Image.png

Estimations of reductions in household vehicle miles traveled under scenarios of shifts in vehicle type choice

Description

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts.

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.

Contributors

Agent

Created

Date Created
  • 2013

150867-Thumbnail Image.png

Sensitivity of synthetic population generation procedures in transportation models, implications of alternative constraints

Description

The growing use of synthetic population, which is a disaggregate representation of the population of an area similar to the real population currently or in the future, has motivated the

The growing use of synthetic population, which is a disaggregate representation of the population of an area similar to the real population currently or in the future, has motivated the analysis of its sensitivity in the population generation procedure. New methods in PopGen have enhanced the generation of synthetic populations whereby both household-level and person-level characteristics of interest can be matched in a computationally efficient manner. In the process of set up, population synthesis procedures need sample records for households and persons to match the marginal totals with a specific set of control variables for both the household and person levels, or only the household level, for a specific geographic resolution. In this study, an approach has been taken to analyze the sensitivity by changing and varying this number of controls, with and without taking person controls. The implementation of alternative constraints has been applied on a sample of three hundred block groups in Maricopa County, Arizona. The two datasets that have been used in this study are Census 2000 and a combination of Census 2000 and ACS 2005-2009 dataset. The variation in results for two different rounding methods: arithmetic and bucket rounding have been examined. Finally, the combined sample prepared from the available Census 2000 and ACS 2005-2009 dataset was used to investigate how the results differ when flexibility for drawing households is greater. Study shows that fewer constraints both in household and person levels match the aggregate total population more accurately but could not match distributions of individual attributes. A greater number of attributes both in household and person levels need to be controlled. Where number of controls is higher, using bucket rounding improves the accuracy of the results in both aggregate and disaggregates level. Using combined sample gives the software more flexibility as well as a rich seed matrix to draw households which generates more accurate synthetic population. Therefore, combined sample is another potential option to improve the accuracy in matching both aggregate and disaggregate level household and person distributions.

Contributors

Agent

Created

Date Created
  • 2012

156498-Thumbnail Image.png

Shared Mobility Optimization in Large Scale Transportation Networks: Methodology and Applications

Description

Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a

Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). Previous research has made a number of important contributions to the challenging pickup and delivery problem along different formulation or solution approaches. However, there are a number of modeling and algorithmic challenges for a large-scale deployment of a vehicle routing and scheduling algorithm, especially for regional networks with various road capacity and traffic delay constraints on freeway bottlenecks and signal timing on urban streets. The main thrust of this research is constructing hyper-networks to implicitly impose complicated constraints of a vehicle routing problem (VRP) into the model within the network construction. This research introduces a new methodology based on hyper-networks to solve the very important vehicle routing problem for the case of generic ride-sharing problem. Then, the idea of hyper-networks is applied for (1) solving the pickup and delivery problem with synchronized transfers, (2) computing resource hyper-prisms for sustainable transportation planning in the field of time-geography, and (3) providing an integrated framework that fully captures the interactions between supply and demand dimensions of travel to model the implications of advanced technologies and mobility services on traveler behavior.

Contributors

Agent

Created

Date Created
  • 2018

150506-Thumbnail Image.png

Integrated model of the urban continuum with dynamic time-dependent activity-travel microsimulation: framework, prototype, and implementation

Description

The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important

The development of microsimulation approaches to urban systems modeling has occurred largely in three parallel streams of research, namely, land use, travel demand and traffic assignment. However, there are important dependencies and inter-relationships between the model systems which need to be accounted to accurately and comprehensively model the urban system. Location choices affect household activity-travel behavior, household activity-travel behavior affects network level of service (performance), and network level of service, in turn, affects land use and activity-travel behavior. The development of conceptual designs and operational frameworks that represent such complex inter-relationships in a consistent fashion across behavioral units, geographical entities, and temporal scales has proven to be a formidable challenge. In this research, an integrated microsimulation modeling framework called SimTRAVEL (Simulator of Transport, Routes, Activities, Vehicles, Emissions, and Land) that integrates the component model systems in a behaviorally consistent fashion, is presented. The model system is designed such that the activity-travel behavior model and the dynamic traffic assignment model are able to communicate with one another along continuous time with a view to simulate emergent activity-travel patterns in response to dynamically changing network conditions. The dissertation describes the operational framework, presents the modeling methodologies, and offers an extensive discussion on the advantages that such a framework may provide for analyzing the impacts of severe network disruptions on activity-travel choices. A prototype of the model system is developed and implemented for a portion of the Greater Phoenix metropolitan area in Arizona to demonstrate the capabilities of the model system.

Contributors

Agent

Created

Date Created
  • 2012

149462-Thumbnail Image.png

Modeling the role and influence of children in household activity-based rravel model systems

Description

Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for

Rapid developments are occurring in the arena of activity-based microsimulation models. Advances in computational power, econometric methodologies and data collection have all contributed to the development of microsimulation tools for planning applications. There has also been interest in modeling child daily activity-travel patterns and their influence on those of adults in the household using activity-based microsimulation tools. It is conceivable that most of the children are largely dependent on adults for their activity engagement and travel needs and hence would have considerable influence on the activity-travel schedules of adult members in the household. In this context, a detailed comparison of various activity-travel characteristics of adults in households with and without children is made using the National Household Travel Survey (NHTS) data. The analysis is used to quantify and decipher the nature of the impact of activities of children on the daily activity-travel patterns of adults. It is found that adults in households with children make a significantly higher proportion of high occupancy vehicle (HOV) trips and lower proportion of single occupancy vehicle (SOV) trips when compared to those in households without children. They also engage in more serve passenger activities and fewer personal business, shopping and social activities. A framework for modeling activities and travel of dependent children is proposed. The framework consists of six sub-models to simulate the choice of going to school/pre-school on a travel day, the dependency status of the child, the activity type, the destination, the activity duration, and the joint activity engagement with an accompanying adult. Econometric formulations such as binary probit and multinomial logit are used to obtain behaviorally intuitive models that predict children's activity skeletons. The model framework is tested using a 5% sample of a synthetic population of children for Maricopa County, Arizona and the resulting patterns are validated against those found in NHTS data. Microsimulation of these dependencies of children can be used to constrain the adult daily activity schedules. The deployment of this framework prior to the simulation of adult non-mandatory activities is expected to significantly enhance the representation of the interactions between children and adults in activity-based microsimulation models.

Contributors

Agent

Created

Date Created
  • 2010