Matching Items (6)

151698-Thumbnail Image.png

Radiation dose optimization for critical organs

Description

Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than

Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios.

Contributors

Agent

Created

Date Created
  • 2013

153643-Thumbnail Image.png

Small blob detection in medical images

Description

Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment.

Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in histopathology images, small breast lesions in ultrasound images, glomeruli in kidney MR images etc. This problem is particularly challenging because the small blobs often have inhomogeneous intensity distribution and indistinct boundary against the background.

This research develops a generalized four-phased system for small blob detections. The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) detector is proposed. Using the scale space theory as foundation, the image is smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale based on which a pre-segmentation is conducted. Novel Regional features are extracted from pre-segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models (VBGMM) for post pruning. Sixteen cell histology images and two hundred cell fluorescent images are tested to demonstrate the performances of HLoG. Next, as an extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that HDoG has the potential to automatically detect glomeruli, enabling new measurements of renal microstructures and pathology in preclinical and clinical studies. Realizing the computation time is a key factor impacting the clinical adoption, the last phase of this research is to investigate the data reduction technique for VBGMM in HDoG to handle large-scale datasets. A new coreset algorithm is developed for variational Bayesian mixture models. Using the same MRI dataset, it is observed that the four-phased system with coreset-VBGMM has similar performance as using the full dataset but about 20 times faster.

Contributors

Agent

Created

Date Created
  • 2015

152201-Thumbnail Image.png

Coronary artery plaque assessment with fast switched dual energy X-ray computed tomography angiography

Description

Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide

Coronary computed tomography angiography (CTA) has a high negative predictive value for ruling out coronary artery disease with non-invasive evaluation of the coronary arteries. My work has attempted to provide metrics that could increase the positive predictive value of coronary CTA through the use of dual energy CTA imaging. After developing an algorithm for obtaining calcium scores from a CTA exam, a dual energy CTA exam was performed on patients at dose levels equivalent to levels for single energy CTA with a calcium scoring exam. Calcium Agatston scores obtained from the dual energy CTA exam were within ±11% of scores obtained with conventional calcium scoring exams. In the presence of highly attenuating coronary calcium plaques, the virtual non-calcium images obtained with dual energy CTA were able to successfully measure percent coronary stenosis within 5% of known stenosis values, which is not possible with single energy CTA images due to the presence of the calcium blooming artifact. After fabricating an anthropomorphic beating heart phantom with coronary plaques, characterization of soft plaque vulnerability to rupture or erosion was demonstrated with measurements of the distance from soft plaque to aortic ostium, percent stenosis, and percent lipid volume in soft plaque. A classification model was developed, with training data from the beating heart phantom and plaques, which utilized support vector machines to classify coronary soft plaque pixels as lipid or fibrous. Lipid versus fibrous classification with single energy CTA images exhibited a 17% error while dual energy CTA images in the classification model developed here only exhibited a 4% error. Combining the calcium blooming correction and the percent lipid volume methods developed in this work will provide physicians with metrics for increasing the positive predictive value of coronary CTA as well as expanding the use of coronary CTA to patients with highly attenuating calcium plaques.

Contributors

Agent

Created

Date Created
  • 2013

151852-Thumbnail Image.png

Characterization of coronary atherosclerotic plaques by dual energy computed tomography

Description

Coronary heart disease (CHD) is the most prevalent cause of death worldwide. Atherosclerosis which is the condition of plaque buildup on the inside of the coronary artery wall is the

Coronary heart disease (CHD) is the most prevalent cause of death worldwide. Atherosclerosis which is the condition of plaque buildup on the inside of the coronary artery wall is the main cause of CHD. Rupture of unstable atherosclerotic coronary plaque is known to be the cause of acute coronary syndrome. The composition of plaque is important for detection of plaque vulnerability. Due to prognostic importance of early stage identification, non-invasive assessment of plaque characterization is necessary. Computed tomography (CT) has emerged as a non-invasive alternative to coronary angiography. Recently, dual energy CT (DECT) coronary angiography has been performed clinically. DECT scanners use two different X-ray energies in order to determine the energy dependency of tissue attenuation values for each voxel. They generate virtual monochromatic energy images, as well as material basis pair images. The characterization of plaque components by DECT is still an active research topic since overlap between the CT attenuations measured in plaque components and contrast material shows that the single mean density might not be an appropriate measure for characterization. This dissertation proposes feature extraction, feature selection and learning strategies for supervised characterization of coronary atherosclerotic plaques. In my first study, I proposed an approach for calcium quantification in contrast-enhanced examinations of the coronary arteries, potentially eliminating the need for an extra non-contrast X-ray acquisition. The ambiguity of separation of calcium from contrast material was solved by using virtual non-contrast images. Additional attenuation data provided by DECT provides valuable information for separation of lipid from fibrous plaque since the change of their attenuation as the energy level changes is different. My second study proposed these as the input to supervised learners for a more precise classification of lipid and fibrous plaques. My last study aimed at automatic segmentation of coronary arteries characterizing plaque components and lumen on contrast enhanced monochromatic X-ray images. This required extraction of features from regions of interests. This study proposed feature extraction strategies and selection of important ones. The results show that supervised learning on the proposed features provides promising results for automatic characterization of coronary atherosclerotic plaques by DECT.

Contributors

Agent

Created

Date Created
  • 2013

149904-Thumbnail Image.png

A new approach for the enhancement of dual-energy computed tomography images

Description

Computed tomography (CT) is one of the essential imaging modalities for medical diagnosis. Since its introduction in 1972, CT technology has been improved dramatically, especially in terms of its acquisition

Computed tomography (CT) is one of the essential imaging modalities for medical diagnosis. Since its introduction in 1972, CT technology has been improved dramatically, especially in terms of its acquisition speed. However, the main principle of CT which consists in acquiring only density information has not changed at all until recently. Different materials may have the same CT number, which may lead to uncertainty or misdiagnosis. Dual-energy CT (DECT) was reintroduced recently to solve this problem by using the additional spectral information of X-ray attenuation and aims for accurate density measurement and material differentiation. However, the spectral information lies in the difference between two low and high energy images or measurements, so that it is difficult to acquire the accurate spectral information due to amplification of high pixel noise in the resulting difference image. In this work, a new model and an image enhancement technique for DECT are proposed, based on the fact that the attenuation of a high density material decreases more rapidly as X-ray energy increases. This fact has been previously ignored in most of DECT image enhancement techniques. The proposed technique consists of offset correction, spectral error correction, and adaptive noise suppression. It reduced noise, improved contrast effectively and showed better material differentiation in real patient images as well as phantom studies.

Contributors

Agent

Created

Date Created
  • 2011

149315-Thumbnail Image.png

Modeling supply chain dynamics with calibrated simulation using data fusion

Description

In today's global market, companies are facing unprecedented levels of uncertainties in supply, demand and in the economic environment. A critical issue for companies to survive increasing competition is to

In today's global market, companies are facing unprecedented levels of uncertainties in supply, demand and in the economic environment. A critical issue for companies to survive increasing competition is to monitor the changing business environment and manage disturbances and changes in real time. In this dissertation, an integrated framework is proposed using simulation and online calibration methods to enable the adaptive management of large-scale complex supply chain systems. The design, implementation and verification of the integrated approach are studied in this dissertation. The research contributions are two-fold. First, this work enriches symbiotic simulation methodology by proposing a framework of simulation and advanced data fusion methods to improve simulation accuracy. Data fusion techniques optimally calibrate the simulation state/parameters by considering errors in both the simulation models and in measurements of the real-world system. Data fusion methods - Kalman Filtering, Extended Kalman Filtering, and Ensemble Kalman Filtering - are examined and discussed under varied conditions of system chaotic levels, data quality and data availability. Second, the proposed framework is developed, validated and demonstrated in `proof-of-concept' case studies on representative supply chain problems. In the case study of a simplified supply chain system, Kalman Filtering is applied to fuse simulation data and emulation data to effectively improve the accuracy of the detection of abnormalities. In the case study of the `beer game' supply chain model, the system's chaotic level is identified as a key factor to influence simulation performance and the choice of data fusion method. Ensemble Kalman Filtering is found more robust than Extended Kalman Filtering in a highly chaotic system. With appropriate tuning, the improvement of simulation accuracy is up to 80% in a chaotic system, and 60% in a stable system. In the last study, the integrated framework is applied to adaptive inventory control of a multi-echelon supply chain with non-stationary demand. It is worth pointing out that the framework proposed in this dissertation is not only useful in supply chain management, but also suitable to model other complex dynamic systems, such as healthcare delivery systems and energy consumption networks.

Contributors

Agent

Created

Date Created
  • 2010