Matching Items (81)
Filtering by

Clear all filters

154897-Thumbnail Image.png
Description
An integrated experimental and numerical investigation for laser-generated optoacoustic wave propagation in structural materials is performed. First, a multi-physics simulation model is proposed to simulate the pulsed laser as a point heat source which hits the surface of an aluminum sheet. The pulsed laser source can generate a localized heating

An integrated experimental and numerical investigation for laser-generated optoacoustic wave propagation in structural materials is performed. First, a multi-physics simulation model is proposed to simulate the pulsed laser as a point heat source which hits the surface of an aluminum sheet. The pulsed laser source can generate a localized heating on the surface of the plate and induce an in-plane stress wave. ANSYS – a finite element analysis software – is used to build the 3D model and a coupled thermal-mechanical simulation is performed in which the heat flux is determined by an empirical laser-heat conversion relationship. The displacement and stress field-histories are obtained to get the time of arrival and wave propagation speed of the stress wave. The effect of an added point mass is investigated in detail to observe the local material perturbation and remote wave signals. Following this, the experimental investigation of optoacoustic wave is also performed. A new experimental setup and control is developed and assembled in-house. Various laser firing parameters are investigated experimentally and the optimal combination is used for the experimental testing. Matrix design for different testing conditions is also proposed to include the effect of wave path, sampling procedure, and local point mass on the optoacoustic wave propagation. The developed numerical simulation results are validated with experimental observations. It is shown that the proposed experimental setup can offer a potential fast scanning method for damage detection (local property change) for plate-like structural component.
ContributorsLiu, Chen (Author) / Liu, Yongming (Thesis advisor) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
154853-Thumbnail Image.png
Description
Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure

Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure mathematical consideration and only limited effort has been paid to include mechanical properties, the goal of my research is developing a method to analyze the mechanical behavior of origami and kirigami based structures. Mechanical characteristics, including nonlocal effect and fracture of the structures, as well as elasticity and plasticity of materials are studied. For calculation of relative simple structures and building of structures’ constitutive relations, analytical approaches were used. For more complex structures, finite element analysis (FEA), which is commonly applied as a numerical method for the analysis of solid structures, was utilized. The general study approach is not necessarily related to characteristic size of model. I believe the scale-independent method described here will pave a new way to understand the mechanical response of a variety of origami and kirigami based structures under given mechanical loading.
ContributorsLv, Cheng (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Mignolet, Marc (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2016
154854-Thumbnail Image.png
Description
The operating temperature of photovoltaic (PV) modules is affected by external factors such as irradiance, wind speed and ambient temperature as well as internal factors like material properties and design properties. These factors can make a difference in the operating temperatures between cells within a module and between modules within

The operating temperature of photovoltaic (PV) modules is affected by external factors such as irradiance, wind speed and ambient temperature as well as internal factors like material properties and design properties. These factors can make a difference in the operating temperatures between cells within a module and between modules within a plant. This is a three-part thesis.

Part 1 investigates the behavior of temperature distribution of PV cells within a module through outdoor temperature monitoring under various operating conditions (Pmax, Voc and Isc) and examines deviation in the temperature coefficient values pertaining to this temperature variation. ANOVA, a statistical tool, was used to study the influence of various factors on temperature variation. This study also investigated the thermal non-uniformity affecting I-V parameters and performance of four different PV technologies (crystalline silicon, CdTe, CIGS, a-Si). Two new approaches (black-colored frame and aluminum tape on back-sheet) were implemented in addition to the two previously-used approaches (thermally insulating the frame, and frame and back sheet) to study temperature uniformity improvements within c-Si PV modules on a fixed latitude-tilt array. This thesis concludes that frame thermal insulation and black frame help reducing thermal gradients and next best viable option to improve temperature uniformity measurements is by using average of four thermocouples as per IEC 61853-2 standard.

Part 2 analyzes the temperature data for two power plants (fixed-tilt and one-axis) to study the temperature variation across the cells in a module and across the modules in a power plant. The module placed in the center of one-axis power plant had higher temperature, whereas in fixed-tilt power plant, the module in north-west direction had higher temperatures. Higher average operating temperatures were observed in one-axis tracking as compared to the fixed-tilt PV power plant, thereby expected to lowering their lifetime.

Part 3 focuses on determination of a thermal model coefficients, using parameters similar to Uc and Uv thermal loss factors used in PVsyst, for modules of four different PV technologies experiencing hot-desert climate conditions by statistically correlating a year-long monitored data. Thermal models help to effectively quantity factors influencing module temperatures to estimate performance and energy models.
ContributorsPavgi, Ashwini (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154921-Thumbnail Image.png
Description
The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied.

The proposed research mainly focuses on employing tunable materials to achieve dynamic control of radiative heat transfer in both far and near fields for thermal management. Vanadium dioxide (VO2), which undergoes a phase transition from insulator to metal at the temperature of 341 K, is one tunable material being applied. The other one is graphene, whose optical properties can be tuned by chemical potential through external bias or chemical doping.

In the far field, a VO2-based metamaterial thermal emitter with switchable emittance in the mid-infrared has been theoretically studied. When VO2 is in the insulating phase, high emittance is observed at the resonance frequency of magnetic polaritons (MPs), while the structure becomes highly reflective when VO2 turns metallic. A VO2-based thermal emitter with tunable emittance is also demonstrated due to the excitation of MP at different resonance frequencies when VO2 changes phase. Moreover, an infrared thermal emitter made of graphene-covered SiC grating could achieve frequency-tunable emittance peak via the change of the graphene chemical potential.

In the near field, a radiation-based thermal rectifier is constructed by investigating radiative transfer between VO2 and SiO2 separated by nanometer vacuum gap distances. Compared to the case where VO2 is set as the emitter at 400 K as a metal, when VO2 is considered as the receiver at 300 K as an insulator, the energy transfer is greatly enhanced due to the strong surface phonon polariton (SPhP) coupling between insulating VO2 and SiO2. A radiation-based thermal switch is also explored by setting VO2 as both the emitter and the receiver. When both VO2 emitter and receiver are at the insulating phase, the switch is at the “on” mode with a much enhanced heat flux due to strong SPhP coupling, while the near-field radiative transfer is greatly suppressed when the emitting VO2 becomes metallic at temperatures higher than 341K during the “off” mode. In addition, an electrically-gated thermal modulator made of graphene covered SiC plates is theoretically studied with modulated radiative transport by varying graphene chemical potential. Moreover, the MP effect on near-field radiative transport has been investigated by spectrally enhancing radiative heat transfer between two metal gratings.
ContributorsYang, Yue (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Tongay, Sefaattin (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2016
154951-Thumbnail Image.png
Description
Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting

Solar photovoltaic (PV) industry is tipped to be one of the front-runners in the renewable industry. Typically, PV module manufacturers provide a linear or step warranty of 80% of original power over 25 years. This power loss during the field exposure is primarily attributed to the development of performance affecting defects in the PV modules. As many as 86 different defects can occur in a PV module. One of the major defects that can cause significant power loss is the interconnect metallization system (IMS) degradation which is the focus of this thesis. The IMS is composed of cell-interconnect (cell-ribbon interconnect) and string-interconnect (ribbon-ribbon interconnect). The cell interconnect is in turn composed of silver metallization (fingers and busbars) and solder bonds between silver busbar and copper ribbon. Weak solder bonding between copper ribbon and busbar of a cell results in increase of series resistance that in turn affects the fill factor causing a power drop. In this thesis work, the results obtained from various non-destructive and destructive experiments performed on modules exposed in three different climates (Arizona - Hot and Dry, Mexico - Warm and Humid, and California - Temperate) are presented. These experiments include light I-V measurements, dark I-V measurements, infrared imaging, extraction of test samples from the modules, peel strength measurements and four-point resistance measurements. The extraction of test samples was performed using a mechanical method and a chemical method. The merits and demerits of these two methods are presented. A drop of 10.33% in fill factor was observed for a 0.05Ω increase in the series resistance of the modules investigated in this work. Different combinations in a cell that can cause series resistance increase were considered and their effect on fill factor were observed using four-point probe experiments. Peel test experiments were conducted to correlate the effect of series resistance on the ribbon peel strength. Finally, climate specific thermal modelling was performed for 4 different sites over 20 years in order to calculate the accumulated thermal fatigue and also to evaluate its correlation, if any, with the increase of series resistance.
ContributorsTummala, Abhishiktha (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154820-Thumbnail Image.png
Description
In recent years, solar photovoltaic (PV) industry has seen lots of improvements in technology and of growth in market with crystalline silicon PV modules being the most widely used technology. Plant inspections are gaining much importance to identify and quantitatively determine the impacts of various visual defects on performance. There

In recent years, solar photovoltaic (PV) industry has seen lots of improvements in technology and of growth in market with crystalline silicon PV modules being the most widely used technology. Plant inspections are gaining much importance to identify and quantitatively determine the impacts of various visual defects on performance. There are about 86 different types of defects found in the PV modules installed in various climates and most of them can be visually observed. However, a quantitative determination of impact or risk of each of identified defect on performance is challenging. Thus, it is utmost important to quantify the risk for each of the visual defects without any human subjectivity. The best way to quantify the risk of each defect is to perform current-voltage measurements of the defective modules installed in the plant but it requires disruption of plant operation, expensive measuring equipment and intensive human resources. One of the most riskiest and dominant visual defects is encapsulant browning which affects the PV module performance in the form of current degradation. The present study deals with developing an automated image processing tool which can address the issues of human subjectivity on browning level impacting performance. The image processing tool developed in this work can be directly used to quantify the impact of browning on performance without intrusively disconnecting the modules from the plant. In this work, the quantified browning level impact on performance has also been experimentally validated through a correlation study using short-circuit current and reflectance/transmittance measurements of browned PV modules retrieved from aged plants/systems installed in diverse climatic conditions. The primary goal of the image processing tool developed in this work is to determine the performance impact of encapsulant browning without interrupting the plant operation for I-V measurements. The use of image processing tool provides a single numerical value, called browning index (BI), which can accurately quantify browning levels on modules and also correlate with the performance and reflectance/transmittance parameters of the modules.
ContributorsGudla, Sushanth (Author) / Govindasamy, Tamizhmani (Thesis advisor) / Patrick, Phelan E (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154908-Thumbnail Image.png
Description
Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV

Soiling is one of the major environmental factors causing the negative performance of photovoltaic (PV) modules. Dust particles, air pollution particles, pollen, bird droppings and other industrial airborne particles are some natural sources that cause soiling. The thickness of soiling layer has a direct impact on the performance of PV modules. This phenomenon occurs over a period of time with many unpredictable environmental variables indicated above. This situation makes it difficult to calculate or predict the soiling effect on performance. The dust particles vary from one location to the other in terms of particle size, color and chemical composition. These properties influence the extent of performance (current) loss, spectral loss and adhesion of soil particles on the surface of the PV modules. To address this uncontrolled environmental issues, research institutes around the world have started designing indoor artificial soiling stations to deposit soil layers in various controlled environments using reference soil samples and/or soil samples collected from the surface of PV modules installed in the locations of interest. This thesis is part of a twin thesis. The first thesis (this thesis) authored by Shanmukha Mantha is related to the development of soiling stations and the second thesis authored by Darshan Choudhary is associated with the characterization of the soiled samples (glass coupons, one-cell PV coupons and multi-cell PV coupons). This thesis is associated with the development of three types of indoor artificial soiling deposition techniques replicating the outside environmental conditions to achieve required soil density, uniformity and other required properties. The three types of techniques are: gravity deposition method, dew deposition method, and humid deposition method. All the three techniques were applied on glass coupons, single-cell PV laminates containing monocrystalline silicon cells and multi-cell PV laminates containing polycrystalline silicon cells. The density and uniformity for each technique on all targets are determined. In this investigation, both reference soil sample (Arizona road dust, ISO 12103-1) and the soil samples collected from the surface of installed PV modules were used. All the three techniques are compared with each other to determine the best method for uniform deposition at varying thickness levels. The advantages, limitations and improvements made in each technique are discussed.
ContributorsMantha, Shanmukha (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
154980-Thumbnail Image.png
Description
Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies

Material extrusion based rapid prototyping systems have been used to produceprototypes for several years. They have been quite important in the additive manufacturing field, and have gained popularity in research, development and manufacturing in a wide field of applications. There has been a lot of interest in using these technologies to produce end use parts, and Fused Deposition Modeling (FDM) has gained traction in leading the transition of rapid prototyping technologies to rapid manufacturing. But parts built with the FDM process exhibit property anisotropy. Many studies have been conducted into process optimization, material properties and even post processing of parts, but were unable to solve the strength anisotropy issue. To address this, an optical heating system has been proposed to achieve localized heating of the pre- deposition surface prior to material deposition over the heated region. This occurs in situ within the build process, and aims to increase the interface temperature to above glass transition (Tg), to trigger an increase in polymer chain diffusion, and in extension, increase the strength of the part. An increase in flexural strength by 95% at the layer interface has been observed when the optical heating method was implemented, thereby improving property isotropy of the FDM part. This approach can be designed to perform real time control of inter-filament and interlayer temperatures across the build volume of a part, and can be tuned to achieve required mechanical properties.
ContributorsKurapatti Ravi, Abinesh (Author) / Hao Hsu, Keng (Thesis advisor) / Hildreth, Owen (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2016
155430-Thumbnail Image.png
Description
A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC

A new class of layered materials called the transition metal trichalcogenides (TMTCs) exhibit strong anisotropic properties due to their quasi-1D nature. These 2D materials are composed of chain-like structures which are weakly bound to form planar sheets with highly directional properties. The vibrational properties of three materials from the TMTC family, specifically TiS3, ZrS3, and HfS3, are relatively unknown and studies performed in this work elucidates the origin of their Raman characteristics. The crystals were synthesized through chemical vapor transport prior to mechanical exfoliation onto Si/SiO¬2 substrates. XRD, AFM, and Raman spectroscopy were used to determine the crystallinity, thickness, and chemical signature of the exfoliated crystals. Vibrational modes and anisotropic polarization are investigated through density functional theory calculations and angle-resolved Raman spectroscopy. Particular Raman modes are explored in order to correlate select peaks to the b-axis crystalline direction. Mode III vibrations for TiS3, ZrS3, and HfS3 are shared between each material and serves as a unique identifier of the crystalline orientation in MX3 materials. Similar angle-resolved Raman studies were conducted on the novel Nb0.5Ti0.5S3 alloy material grown through chemical vapor transport. Results show that the anisotropy direction is more difficult to determine due to the randomization of quasi-1D chains caused by defects that are common in 2D alloys. This work provides a fundamental understanding of the vibrational properties of various TMTC materials which is needed to realize applications in direction dependent polarization and linear dichroism.
ContributorsKong, Wilson (Author) / Tongay, Sefaattin (Thesis advisor) / Wang, Liping (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2017
155599-Thumbnail Image.png
Description
Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if

Advancements in thermal interface materials (TIMs) allows for the creation of new and more powerful electronics as they increase the heat transfer from the component to the heat sink. Current industrial options provide decent heat transfer, but the creation of TIMs with higher thermal conductivities is needed. In addition, if these TIMs are elastic in nature, their effectiveness can greatly increase as they can deal with changing interfaces without degradation of their properties. The research performed delves into this idea, creating elastic TIMs using liquid metal (LM), in this case galinstan, along with other matrix particles embedded in Polydimethylsiloxane (PDMS) to create an easy to use, relatively inexpensive, thermally conductive, but electrically insulative, pad with increased thermal conductivity from industrial solutions.

The pads were created using varying amounts of LM and matrix materials ranging from copper microspheres to diamond powder mixed into PDMS using a high-speed mixer. The material was then cast into molds and cured to create the pads. Once the pads were created, the difficulty came in quantifying their thermal properties. A stepped bar apparatus (SBA) following ASTM D5470 was created to measure the thermal resistance of the pads but it was determined that thermal conductivity was a more usable metric of the pads’ performance. This meant that the pad’s in-situ thickness was needed during testing, prompting the installation of a linear encoder to measure the thickness. The design and analysis of the necessary modification and proposed future design is further detailed in the following paper.
ContributorsKemme, Nicholas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Thesis advisor) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2017