Matching Items (1,027)
Filtering by

Clear all filters

156602-Thumbnail Image.png
Description
The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used

The goal of fact checking is to determine if a given claim holds. A promising ap- proach for this task is to exploit reference information in the form of knowledge graphs (KGs), a structured and formal representation of knowledge with semantic descriptions of entities and relations. KGs are successfully used in multiple appli- cations, but the information stored in a KG is inevitably incomplete. In order to address the incompleteness problem, this thesis proposes a new method built on top of recent results in logical rule discovery in KGs called RuDik and a probabilistic extension of answer set programs called LPMLN.

This thesis presents the integration of RuDik which discovers logical rules over a given KG and LPMLN to do probabilistic inference to validate a fact. While automatically discovered rules over a KG are for human selection and revision, they can be turned into LPMLN programs with a minor modification. Leveraging the probabilistic inference in LPMLN, it is possible to (i) derive new information which is not explicitly stored in a KG with a probability associated with it, and (ii) provide supporting facts and rules for interpretable explanations for such decisions.

Also, this thesis presents experiments and results to show that this approach can label claims with high precision. The evaluation of the system also sheds light on the role played by the quality of the given rules and the quality of the KG.
ContributorsPradhan, Anish (Author) / Lee, Joohyung (Thesis advisor) / Baral, Chitta (Committee member) / Papotti, Paolo (Committee member) / Arizona State University (Publisher)
Created2018
134154-Thumbnail Image.png
Description
The need for automated / computational fact checking has grown substantially in recent times due to the high volume of false information and limited workforce of human fact checkers. This need has spawned research and new developments in this field and has created many different systems and approaches to this

The need for automated / computational fact checking has grown substantially in recent times due to the high volume of false information and limited workforce of human fact checkers. This need has spawned research and new developments in this field and has created many different systems and approaches to this complex problem. This paper attempts to not just explain the most popular methods that are currently being used, but provide experimental results of the comparison of two different systems, the replication of results from their respective papers, and an annotated data-set of different test sentences to be used in these systems.
ContributorsRosenkilde, Trevor Curtis (Author) / Papotti, Paolo (Thesis director) / Candan, Kasim (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12