Matching Items (14)
157386-Thumbnail Image.png
Description
Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex

Minimally invasive endovascular embolization procedures decrease surgery time, speed up recovery, and provide the possibility for more comprehensive treatment of aneurysms, arteriovenous malformations (AVMs), and hypervascular tumors. Liquid embolic agents (LEAs) are preferred over mechanical embolic agents, such as coils, because they achieve homogeneous filling of aneurysms and more complex angioarchitectures. The gold standard of commercially available LEAs is dissolved in dimethyl sulfoxide (DMSO), which has been associated with vasospasm and angiotoxicity. The aim of this study was to investigate amino acid substitution in an enzyme-degradable side group of an N-isopropylacrylamide (NIPAAm) copolymer for the development of a LEA that would be delivered in water and degrade at the rate that tissue is regenerated. NIPAAm copolymers have a lower critical solution temperature (LCST) due to their amphiphilic nature. This property enables them to be delivered as liquids through a microcatheter below their LCST and to solidify in situ above the LCST, which would result in the successful selective occlusion of blood vessels. Therefore, in this work, a series of poly(NIPAAm-co-peptide) copolymers with hydrophobic side groups containing the Ala-Pro-Gly-Leu collagenase substrate peptide sequence were synthesized as in situ forming, injectable copolymers.. The Gly-Leu peptide bond in these polypeptides is cleaved by collagenase, converting the side group into the more hydrophilic Gly-Ala-Pro-Gly-COOH (GAPG-COOH), thus increasing the LCST of the hydrogel after enzyme degradation. Enzyme degradation property and moderate mechanical stability convinces the use of these copolymers as liquid embolic agents.
ContributorsRosas Gomez, Karime Jocelyn (Author) / Vernon, Brent (Thesis advisor) / Weaver, Jessica (Committee member) / Pal, Amrita (Committee member) / Arizona State University (Publisher)
Created2019
148276-Thumbnail Image.png
Description

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo

Polymer drug delivery system offers a key to a glaring issue in modern administration routes of drugs and biologics. Poly(lactic-co-glycolic acid) (PLGA) can be used to encapsulate drugs and biologics and deliver them into the patient, which allows high local concentration (compared to current treatment methods), protection of the cargo from the bodily environment, and reduction in systemic side effects. This experiment used a single emulsion technique to encapsulate L-tyrosine in PLGA microparticles and UV spectrophotometry to analyze the drug release over a period of one week. The release assay found that for the tested samples, the released amount is distinct initially, but is about the same after 4 days, and they generally follow the same normalized percent released pattern. The experiment could continue with testing more samples, test the same samples for a longer duration, and look into higher w/w concentrations such as 20% or 50%.

ContributorsSeo, Jinpyo (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Dean, W.P. Carey School of Business (Contributor) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

This study was conducted to determine how 3D cultured trophoblasts' secreted factors impact NK-92 activation and cytotoxicity during early pregnancy. In this study, 6 week gestational age human cytotrophoblast stem cells (iCTB) were cultured in 2D, 3D matrigel, and 3D synthetic hydrogels composed of 20 kDa 4-arm poly(ethylene glycol)-maleimide (PEG-Mal)

This study was conducted to determine how 3D cultured trophoblasts' secreted factors impact NK-92 activation and cytotoxicity during early pregnancy. In this study, 6 week gestational age human cytotrophoblast stem cells (iCTB) were cultured in 2D, 3D matrigel, and 3D synthetic hydrogels composed of 20 kDa 4-arm poly(ethylene glycol)-maleimide (PEG-Mal) modified with a GFOGR adhesive ligand (1 mM) and crosslinked with dithiothreitol (DTT), a non-degradable crosslinker. On day six, trophoblast supernatants were collected to investigate the influence of trophoblast organoid secreted factors on activated NK cell phenotype, measured by CD107a expression and levels of IFNγ secretion. Here we demonstrate that NK-92 cells possess a dNK2-like phenotype, and that supernatants of cytotrophoblasts cultured in 2D and synthetic hydrogels, but not matrigel, reduce activated NK-92 cytokine secretion.

ContributorsBrown, Elise (Author) / Weaver, Jessica (Thesis director) / Lancaster, Jessica (Committee member) / Slaby, Emily (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
DescriptionBreast implant illness (BII) is a controversial disease that results in a cluster of various symptoms. As a result, patients frequently diagnose themselves based on what they learn from social media and online articles. Our thesis analyzes BII, including its frequency, common symptoms, potential causes, and treatment options.
ContributorsMcNally, Mariah (Author) / Camacho, Jessica (Co-author) / Weaver, Jessica (Thesis director) / Burnsed, Olivia (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-12
DescriptionBreast implant illness (BII) is a controversial disease that results in a cluster of various symptoms. As a result, patients frequently diagnose themselves based on what they learn from social media and online articles. Our thesis analyzes BII, including its frequency, common symptoms, potential causes, and treatment options.
ContributorsCamacho, Jessica (Author) / McNally, Mariah (Co-author) / Weaver, Jessica (Thesis director) / Burnsed, Olivia (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-12
Description
In this comprehensive research, we have pursued a dual investigation within the scope of tissue engineering: firstly, to investigate the retention of nanoprobe siloxane emulsions in bio-compatible hydrogel matrices in order to be able to measure oxygen saturation within the hydrogel; secondly, to refine the design of 3D printed hydrogel

In this comprehensive research, we have pursued a dual investigation within the scope of tissue engineering: firstly, to investigate the retention of nanoprobe siloxane emulsions in bio-compatible hydrogel matrices in order to be able to measure oxygen saturation within the hydrogel; secondly, to refine the design of 3D printed hydrogel molds to enhance structural integrity of hydrogels for cell encapsulation. We evaluated the retention capabilities of these nanoemulsions, tagged with fluorescent dyes, across varying concentrations, and further advanced the mold design to prevent hydrogel unraveling and ensure complete filling. The findings suggest pivotal implications for the application of these hydrogels in cell transplantation and set a methodological precedent for future empirical studies.
ContributorsMazboudi, Jad (Author) / Weaver, Jessica (Thesis director) / Alamin, Tuhfah (Committee member) / Barrett, The Honors College (Contributor) / Watts College of Public Service & Community Solut (Contributor) / Harrington Bioengineering Program (Contributor)
Created2024-05
Description
Cellular assays are the backbone of biological studies - be it for tissue modeling, drug discovery, therapeutics, or diagnostics. Two-dimensional (2D) cell culture has been deployed for several decades to garner physiologically relevant information and predict data before the cost-intensive animal testing. Although 2D techniques have been valuable for cellular

Cellular assays are the backbone of biological studies - be it for tissue modeling, drug discovery, therapeutics, or diagnostics. Two-dimensional (2D) cell culture has been deployed for several decades to garner physiologically relevant information and predict data before the cost-intensive animal testing. Although 2D techniques have been valuable for cellular assays, they have a colossal limitation - they do not adequately consider the natural three-dimensional (3D) microenvironment of the cells. As a result, they sometimes provide misleading statistics. Therefore, it is important to develop a 3D model that predicts cellular behaviors and their interaction with neighboring cells and extracellular matrix (ECM) in a more realistic manner. In recent biomedical research, various platforms have been modeled to generate 3D prototypes of tissues, spheroids, in vitro that could allow the study of cellular responses resembling in vivo environments, such as matrices, scaffolds, and devices. But most of these platforms have drawbacks such as lack of spheroid size control, low yield, or high cost associated with them. On the other hand, Amikagel is a low cost, high-fidelity platform that can facilitate the convenient generation of tumor and stem cell spheroids. Furthermore, Amikabeads are aminoglycoside-derived hydrogel microbeads derived from the same monomers as Amikagel. They are a versatile platform with several chemical groups that can be exploited for encapsulating the spheroids and investigating the delivery of bioactive compounds to the cells. This thesis is focused on engineering novel 3D tumor and stem cell models generated on Amikagel and encapsulated in Amikabeads for proximal delivery of bioactive compounds and applications in regenerative medicine.
ContributorsNanda, Tanya (Author) / Rege, Kaushal (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Weaver, Jessica (Committee member) / Arizona State University (Publisher)
Created2020
131635-Thumbnail Image.png
Description
There is an increasing interest in developing thermo-responsive polymers for treating aneurysms. In this thesis project, the potential for poly(NIPAAm-co-JAAm-co-HEMA-Acrylate) (PNJHAc) as a treatment method for brain aneurysms was investigated. Five different batches of polymer were synthesized, purified, lyophilized, and characterized using nuclear magnetic resonance and cloud point techniques over

There is an increasing interest in developing thermo-responsive polymers for treating aneurysms. In this thesis project, the potential for poly(NIPAAm-co-JAAm-co-HEMA-Acrylate) (PNJHAc) as a treatment method for brain aneurysms was investigated. Five different batches of polymer were synthesized, purified, lyophilized, and characterized using nuclear magnetic resonance and cloud point techniques over the course of several months. Two were tested in aneurysm models. Of these five batches, there were two that showed promise as liquid embolic agents for endovascular embolization.
ContributorsLoui, Michelle (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131784-Thumbnail Image.png
Description
In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness. Currently, embolic materials on the market such as metal coils,

In an embolization therapy, a material is injected into a vessel to block blood flow. While this therapy is useful in starving cancerous cells it can be dangerous, with some blockades in the brain dislodging and causing strokes or blindness. Currently, embolic materials on the market such as metal coils, balloons, and liquid embolic agents do not have a quick removal procedure. An ultrasound cleavable material could be removed in an emergency situation without invasive surgery. The primary goal of this research is to design and synthesize a polymer that can be broken down by high intensity focused ultrasound (HIFU). Initially, we have tested the ultrasound sensitive qualities on PPODA-QT hydrogel, a common embolic agent, but the gel showed no physical change after HIFU exposure. It is theorized that PNIPAAm combined with HIFU sensitive monomers can develop a temperature and ultrasound sensitive embolic agent. In our studies, poly(NIPAAm-co-tBa) had a slight lower critical solution temperature (LCST) change of about 2˚C from before to after HIFU while the study with poly(NIPAAm-co-ACL-BME) and PPODA-QT showed no change in LCST.
ContributorsLein, Karolena (Author) / Vernon, Brent (Thesis director) / Pal, Amrita (Committee member) / Harrington Bioengineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
166211-Thumbnail Image.png
Description

The current clinical gold standards for tissue sealing include sutures, staples, and glues, however several adverse effects limit their use. Sutures and staples inherently cause additional trauma to tissue surrounding the wound, and glues can be lacking in adhesion and are potentially inflammatory. All three also introduce risk of infection.

The current clinical gold standards for tissue sealing include sutures, staples, and glues, however several adverse effects limit their use. Sutures and staples inherently cause additional trauma to tissue surrounding the wound, and glues can be lacking in adhesion and are potentially inflammatory. All three also introduce risk of infection. Light-activated tissue sealing, particularly the use of near-infrared light, is an attractive alternative, as it localizes heat, thereby preventing thermal damage to the surrounding healthy tissue. Previous work identified a glutaraldehyde-crosslinked chitosan film as a lead sealant for gastrointestinal incision sealing, but in vivo testing resulted in tissue degradation in and around the wound. The suggested causes for this degradation were excess acetic acid, endotoxins in the chitosan, and thermal damage. A basic buffer wash protocol was developed to remove excess acid from the films following fabrication. UV-Vis spectroscopy demonstrated that following the wash, films had the same concentration of Indocyanine green as unwashed films, allowing them to absorb light at the same wavelength, therefore showing the wash did not affect the film’s function. However subsequent washes led to degradation of film mass of nearly 20%. Standard chitosan films had significantly greater mass gain (p = 0.028) and significantly less subsequent loss (p= 0.012) than endotoxin free chitosan-films after soaking in phosphate buffered saline for varying durations , while soaking duration had no effect (p = 0.332). Leak pressure testing of films prepared with varying numbers of buffer washes, laser temperature, and lasering time revealed no significant interaction between any of the 3 variables. As such, it was confirmed that proceeding with in vivo testing with the buffer wash, various lasering temperatures, and laser times would not affect the sealing performance of the films. Future investigation will involve characterization of additional materials that may be effective for sealing of internal wounds, as well as drug loading of agents that may hasten the healing process.

ContributorsSira, Antara (Author) / Rege, Kaushal (Thesis director) / Weaver, Jessica (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2022-05