Matching Items (40)
152310-Thumbnail Image.png
Description
The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now

The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now commonplace to see large, distributed multidisciplinary teams working together on a daily basis. However, in this environment, motivating, understanding, and valuing the diverse contributions of individual workers in collaborative enterprises becomes challenging. To address these issues, this thesis presents the goals, design, and implementation of Taskville, a distributed workplace game played by teams on large, public displays. Taskville uses a city building metaphor to represent the completion of individual and group tasks within an organization. Promising results from two usability studies and two longitudinal studies at a multidisciplinary school demonstrate that Taskville supports personal reflection and improves team awareness through an engaging workplace activity.
ContributorsNikkila, Shawn (Author) / Sundaram, Hari (Thesis advisor) / Byrne, Daragh (Committee member) / Davulcu, Hasan (Committee member) / Olson, Loren (Committee member) / Arizona State University (Publisher)
Created2013
Description
As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential

As the application of interactive media systems expands to address broader problems in health, education and creative practice, they fall within a higher dimensional space for which it is inherently more complex to design. In response to this need an emerging area of interactive system design, referred to as experiential media systems, applies hybrid knowledge synthesized across multiple disciplines to address challenges relevant to daily experience. Interactive neurorehabilitation (INR) aims to enhance functional movement therapy by integrating detailed motion capture with interactive feedback in a manner that facilitates engagement and sensorimotor learning for those who have suffered neurologic injury. While INR shows great promise to advance the current state of therapies, a cohesive media design methodology for INR is missing due to the present lack of substantial evidence within the field. Using an experiential media based approach to draw knowledge from external disciplines, this dissertation proposes a compositional framework for authoring visual media for INR systems across contexts and applications within upper extremity stroke rehabilitation. The compositional framework is applied across systems for supervised training, unsupervised training, and assisted reflection, which reflect the collective work of the Adaptive Mixed Reality Rehabilitation (AMRR) Team at Arizona State University, of which the author is a member. Formal structures and a methodology for applying them are described in detail for the visual media environments designed by the author. Data collected from studies conducted by the AMRR team to evaluate these systems in both supervised and unsupervised training contexts is also discussed in terms of the extent to which the application of the compositional framework is supported and which aspects require further investigation. The potential broader implications of the proposed compositional framework and methodology are the dissemination of interdisciplinary information to accelerate the informed development of INR applications and to demonstrate the potential benefit of generalizing integrative approaches, merging arts and science based knowledge, for other complex problems related to embodied learning.
ContributorsLehrer, Nicole (Author) / Rikakis, Thanassis (Committee member) / Olson, Loren (Committee member) / Wolf, Steven L. (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
153158-Thumbnail Image.png
Description
Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy

Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy to the home. Currently, there are a variety of approaches to INR design, which coupled with minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR design presents an inherently complex space as these systems have multiple users including stroke survivors, therapists and designers, each with their own user experience needs. This dissertation proposes that comprehensive INR design, which can address this complex user space, requires and benefits from the application of interdisciplinary research that spans motor learning and interactive learning. A methodology for integrated and iterative design approaches to INR task experience, assessment, hardware, software and interactive training protocol design is proposed within the comprehensive example of design and implementation of a mixed reality rehabilitation system for minimally supervised environments. This system was tested with eight stroke survivors who showed promising results in both functional and movement quality improvement. The results of testing the system with stroke survivors as well as observing user experiences will be presented along with suggested improvements to the proposed design methodology. This integrative design methodology is proposed to have benefit for not only comprehensive INR design but also complex interactive system design in general.
ContributorsBaran, Michael (Author) / Rikakis, Thanassis (Thesis advisor) / Olson, Loren (Thesis advisor) / Wolf, Steven L. (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014
133899-Thumbnail Image.png
Description
Emerging technologies, such as augmented reality (AR), are growing in popularity and accessibility at a fast pace. Developers are building more and more games and applications with this technology but few have stopped to think about what the best practices are for creating a good user experience (UX). Currently, there

Emerging technologies, such as augmented reality (AR), are growing in popularity and accessibility at a fast pace. Developers are building more and more games and applications with this technology but few have stopped to think about what the best practices are for creating a good user experience (UX). Currently, there are no universally accepted human-computer interaction guidelines for augmented reality because it is still relatively new. This paper examines three features - virtual content scale, indirect selection, and virtual buttons - in an attempt to discover their impact on the user experience in augmented reality. A Battleship game was developed using the Unity game engine with Vuforia, an augmented reality platform, and built as an iOS application to test these features. The hypothesis was that both virtual content scale and indirect selection would result in a more enjoyable and engaging user experience whereas the virtual button would be too confusing for users to fully appreciate the feature. Usability testing was conducted to gauge participants' responses to these features. After playing a base version of the game with no additional features and then a second version with one of the three features, participants rated their experiences and provided feedback in a four-part survey. It was observed during testing that people did not inherently move their devices around the augmented space and needed guidance to navigate the game. Most users were fascinated with the visuals of the game and two of the tested features. It was found that movement around the augmented space and feedback from the virtual content were critical aspects in creating a good user experience in augmented reality.
ContributorsBauman, Kirsten (Co-author) / Benson, Meera (Co-author) / Olson, Loren (Thesis director) / LiKamWa, Robert (Committee member) / School of the Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
Distant is a Game Design Document describing an original game by the same name. The game was designed around the principle of core aesthetics, where the user experience is defined first and then the game is built from that experience. Distant is an action-exploration game set on a huge megastructure

Distant is a Game Design Document describing an original game by the same name. The game was designed around the principle of core aesthetics, where the user experience is defined first and then the game is built from that experience. Distant is an action-exploration game set on a huge megastructure floating in the atmosphere of Saturn. Players take on the role of HUE, an artificial intelligence trapped in the body of a maintenance robot, as he explores this strange world and uncovers its secrets. Using acrobatic movement abilities, players will solve puzzles, evade enemies, and explore the world from top to bottom. The world, known as the Strobilus Megastructure, is conical in shape, with living quarters and environmental system in the upper sections and factories and resource mining in the lower sections. The game world is split up into 10 major areas and countless minor and connecting areas. Special movement abilities like wall running and anti-gravity allow players to progress further down in the world. These abilities also allow players to solve more complicated puzzles, and to find more difficult to reach items. The story revolves around six artificial intelligences that were created to maintain the station. Many centuries ago, these AI helped humankind maintain their day-to-day lives and helped researchers working on new scientific breakthroughs. This led to the discovery of faster-than-light travel, and humanity left the station and our solar system to explore the cosmos. HUE, the AI in charge of human relations, fell into depression and shut down. Awakening several hundred years in the future, HUE sets out to find the other AI. Along the way he helps them reconnect and discovers the history and secrets of the station. Distant is intended for players looking for three things: A fantastic world full of discovery, a rich, character driven narrative, and challenging acrobatic gameplay. Players of any age or background are recommended to give it a try, but it will require investment and a willingness to improve. Distant is intended to change players, to force them to confront difficulty and different perspectives. Most games involve upgrading a character; Distant is a game that upgrades the player.
ContributorsGarttmeier, Colin Reiser (Author) / Collins, Daniel (Thesis director) / Amresh, Ashish (Committee member) / School of Arts, Media and Engineering (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135398-Thumbnail Image.png
Description
This paper outlines the development of a software application that explores the plausibility and potential of interacting with three-dimensional sound sources within a virtual environment. The intention of the software application is to allow a user to become engaged with a collection of sound sources that can be perceived both

This paper outlines the development of a software application that explores the plausibility and potential of interacting with three-dimensional sound sources within a virtual environment. The intention of the software application is to allow a user to become engaged with a collection of sound sources that can be perceived both graphically and audibly within a spatial, three-dimensional context. The three-dimensional sound perception is driven primarily by a binaural implementation of a higher order ambisonics framework while graphics and other data are processed by openFrameworks, an interactive media framework for C++. Within the application, sound sources have been given behavioral functions such as flocking or orbit patterns, animating their positions within the environment. The author will summarize the design process and rationale for creating such a system and the chosen approach to implement the software application. The paper will also provide background approaches to spatial audio, gesture and virtual reality embodiment, and future possibilities for the existing project.
ContributorsBurnett, Garrett (Author) / Paine, Garth (Thesis director) / Pavlic, Theodore (Committee member) / School of Humanities, Arts, and Cultural Studies (Contributor) / School of Arts, Media and Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description
The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels

The fashion industry dubs couture as high fashion, yet couture never reaches the finish line when it comes to comfort. Most of the brand name high heels on the market are too painful to wear for long periods of time. For this project, I have developed 3D printed high heels with detachable insoles that will relieve tired feet based on the principle of reflexology. The product integrates traditional flexible insoles with Arduino computing and the result is a functional surface that can ease the pain of the wearer. This paper introduces the product and with it, under-explored opportunities to customize your own high heels at home. Essentially, each consumer will have the ability to personalize and switch out their style without sacrificing comfort. Soon, a consumer will be a designer.
ContributorsNguyen, Nhi N. (Author) / Ingalls, Todd (Thesis director) / Gigantino, Josh (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
136565-Thumbnail Image.png
Description
Modern technologies have allowed for new ways to tell stories. Specifically, interactive film is a medium that has existed for quite some time, but has never really been a widely used or accepted means of conveying narratives in an engaging and effective way. After reviewing some of the most popular

Modern technologies have allowed for new ways to tell stories. Specifically, interactive film is a medium that has existed for quite some time, but has never really been a widely used or accepted means of conveying narratives in an engaging and effective way. After reviewing some of the most popular interactive films to date, I sought to create an interactive film that takes some of the most effective tools implemented by these works of art. I ultimately created If: an Interactive Film with the knowledge I gained. If follows a date between a couple and gives a single audience member the ability to choose the way the narrative progresses at key moments in the narrative. Cycling ‘74’s Max object-oriented programming environment facilitates this interactive film through an audio-driven video feedback system.
ContributorsConte, Salvatore Anthony (Author) / Sha, Xin Wei (Thesis director) / Connell, Ellery (Committee member) / Barrett, The Honors College (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05
Description
This creative project is a visual and sonic exploration of emotion in a video game format. The game is a 2D side-scroller created using PyGame and Python that focuses on a character who uses "emotions" to navigate their increasingly unrecognizable world. This project was taken on to explore the ways

This creative project is a visual and sonic exploration of emotion in a video game format. The game is a 2D side-scroller created using PyGame and Python that focuses on a character who uses "emotions" to navigate their increasingly unrecognizable world. This project was taken on to explore the ways in which technologically-created media can relate to the human experience of emotion, and the ways in which emotions are like software to the human body's hardware. Additionally, this project conceptually comments on and rejects the idea that human situations always require a specific "appropriate" human emotion in response. Credit for the music in this game goes to Markus Rennemann.
ContributorsBennett, Ashley Laura (Author) / Ingalls, Todd (Thesis director) / Kautz, Luke (Committee member) / Barrett, The Honors College (Contributor) / School of Arts, Media and Engineering (Contributor) / School of International Letters and Cultures (Contributor)
Created2014-12
136495-Thumbnail Image.png
Description
The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play

The objective of this project concentrates on the game Defense of the Ancients 2 (Dota 2). In this game, players are constantly striving to improve their skills, which are fueled by the competitive nature of the game. The design influences the community to engage in this interaction as they play the game cooperatively. This thesis illustrates the importance of player interaction in influencing design as well as how imperative design is in affecting player interaction. These two concepts are not separate, but are deeply entwined. Every action performed within a game has to interact with some element of design. Both determine how games become defined as competitive, casual, or creative. Game designers can benefit from this study as it reinforces the basics of developing a game for players to interact with. However, it is impossible to predict exactly how players will react to a designed element. Designers should remember to tailor the game towards their audience, but also react and change the game depending on how players are using the elements of design. In addition, players should continue to push the boundaries of games to help designers adapt their product to their audience. If there is not constant communication between players and designers, games will not be tailored appropriately. Pushing the limits of a game benefits the players as well as the designers to make a more complete game. Designers do not solely create a game for the players. Rather, players design the game for themselves. Keywords: game design, player interaction, affinity space, emergent behavior, Dota 2
ContributorsLarsen, Austin James (Author) / Gee, James Paul (Thesis director) / Holmes, Jeffrey (Committee member) / Kobayashi, Yoshihiro (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / School of Arts, Media and Engineering (Contributor)
Created2015-05