Matching Items (19)

151347-Thumbnail Image.png

Impact of proposed legislation concerning pharmaceutical and personal care products removal on publicly owned treatment works

Description

Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments,

Pharmaceutical and Personal Care Products (PPCPs) are a large, diverse group of emerging contaminants comprised of pharmaceuticals, plasticizers, detergents, and insecticides. Studies have shown that PPCPs are entering aquatic environments, wastewaters, and water supplies. The occurrence of these PPCPs has generated concern resulting in proposed federal legislation that could require control, monitoring, and treatment of Pharmaceutical and Personal Care Products by Publicly Owned Treatment Works (POTWs). This study evaluated the potential financial impact this proposed legislation could have on U.S. POTWs using City of Mesa, Arizona as a model POTW. The current laws concerning PPCPs as well as the proposed legislation were described. The proposed federal legislation would create investigational studies about PPCPs. The studies could lead to regulations concerning the control, monitoring, and treatment of PPCPs by POTWs. The potential financial costs of the following strategies were assessed: multiple barriers concept for PPCP control or prevention programs by POTWs, PPCP monitoring of wastewater, and upgrading POTW treatment technology for PPCP removal. Study results found no new wastewater treatment technologies were economically suitable for POTWs, however, community education and programs such as Household Take-back programs could be financially viable.

Contributors

Agent

Created

Date Created
  • 2012

151339-Thumbnail Image.png

An attitude assessment of Title V environmental leaders toward cap and trade

Description

In 2009, cap and trade was at the forefront of political and environmental discussions. At this time, the American Clean Energy and Security Act passed in the United States House

In 2009, cap and trade was at the forefront of political and environmental discussions. At this time, the American Clean Energy and Security Act passed in the United States House of Representatives. Market based systems are alternatives to traditional regulatory methods such as command and control. This study intended to assess the attitudes of environmental leaders who managed air emissions as a part of their job responsibilities. The attitude of these individuals would have influenced their acceptance of this method as a program to reduce environmental pollution and improve air quality. The purpose of this study was to evaluate the attitudes of South Carolinian Title V environmental leaders toward cap and trade. Additionally, the study intended to determine if experience impacted the attitudes of survey respondents. Lastly, the study determined if environmental leaders found current methods such as command and control effective in air pollution regulation. The survey used the Likert Method of Summated Ratings. Environmental leaders reviewed attitudinal statements about the various subjects. The leaders selected an agreement level which determined their attitudes toward the statement. Numerical response ratings evaluated the leader's attitude by experience level. The survey found that respondents had negative attitudes toward cap and trade. The respondents had a positive attitude toward traditional regulatory methods such as command and control. Lastly, the results concluded that environmental experience did not have an impact on the respondents' attitude toward cap and trade. Therefore, it can be concluded that the environmental leaders prefer traditional air pollution regulatory methods in comparison to alternatives such as cap and trade.

Contributors

Agent

Created

Date Created
  • 2012

149532-Thumbnail Image.png

Solar water disinfection

Description

Water quality is a severe problem throughout the world. Much available water is contaminated by pathogenic microbes. This project reviews the traditional process of solar water disinfection in bottles (SODIS),

Water quality is a severe problem throughout the world. Much available water is contaminated by pathogenic microbes. This project reviews the traditional process of solar water disinfection in bottles (SODIS), discusses experiments conducted with SODIS bottles modified to thermally enhance the process, analyzes experimental data for modified SODIS containers, and suggests ways that by which the traditional process can be improved. Traditional SODIS is currently used in many rural parts of developing countries to disinfect water. The process uses ultraviolet rays and thermal effects to inactivate microorganisms that tend to cause diarrheal disease. If a sufficiently high temperature is attained to reach a synergistic UV-thermal effect range, the process of SODIS is about three times faster. However, many factors can inhibit attainment of sufficient heating of water in SODIS bottles in practice. By modifying the bottles to enhance effectiveness of sunlight in increasing the temperature of the water, SODIS can be more effective. In this research, a series of experiments were conducted over a period of four months and15 days at Arizona State University Polytechnic campus in Mesa, Arizona, U.S.A. Four different types of inexpensive materials (black paint, white paint, foam insulation, and aluminized mylar) were used individually or in combination in seven different modified configurations to assess the potential of the modifications to increase the temperatures of water inside 2-liter PET bottles. Experiments were run in triplicate. Temperatures inside the bottles, along with yard temperature, were recorded over time. Graphs were plotted for each set of experiments. The results of these experiment show that several types of modifications increased water temperature during exposure to sunlight. Water in bottles with black paint and foam insulation on the back side attained the highest temperatures, approximately 8-10 degrees Celsius above temperatures attained in plain bottles. The results of these experiments show how several inexpensive, easily obtained materials can significantly enhance the SODIS process.

Contributors

Agent

Created

Date Created
  • 2011

154136-Thumbnail Image.png

School air toxic monitoring project: Church Rock Elementary School

Description

United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the

United States Environmental Protection Agency (USEPA) had identified and recommended air quality monitoring to take place at 63 schools throughout the country. Unfortunately, tribal schools were not considered during the time USEPA conducted the analysis. The importance of identifying any air toxic pollutants affecting school children needs to be analyzed. Conducting an air monitoring toxic analysis on the Navajo Nation at Church Rock Elementary School, Church Rock, New Mexico (CRNM) was carried out. The current school location posed a concern, in regards to the surrounding stationary, mobile, and natural emissions emitted all types of toxic pollutants. USEPA sponsors various air monitoring program, which Tribal Air Monitoring Support (TAMS) program undertook, and offered tribal programs, organizations or agencies to utilized air monitoring equipment's. The air monitoring setup was conducted with the contract Eastern Research Group, Inc. (ERG) laboratory, where collection of 24-hour ambient air samples for 60 days on a 6-day sampling interval were performed. The analysis for volatile organic compounds (VOCs)were collected from canister samples using USEPA Compendium Method TO-15, polycyclic aromatic hydrocarbons (PAHs) from polyurethane foam (PUF) and XAD-2 resin samples using USEPA Compendium Method TO-13A. Carbonyl compounds were collected by sorbent cartridge samples using USEPA Compendium Method TO-11A, and trace of metals from filters were sampled using USEPA Compendium Method IO-3.5 and FEM EQL-0512-202. A total of 53 VOC concentrations were greater than 1 μg/m3, where dichlorodifluoromethane, trichlorofluoromethane, chloromethane, dichloromethane, propylene, toluene, acrolein and acetylene were detected. A total of 23 carbonyl compound concentrations were greater than 1 μg/m3, where acetone and formaldehyde were measured. Naphthalene average with the highest average for PAHs, where phenanthrene and retene were the second and third highest averages. As for the metals the highest averages resulted from manganese, chromium and lead. Overall, the air toxic pollutants resulted from CRNM surrounding monitoring site were detected. Identifying the potential emitter source or sources cannot be assessed.

Contributors

Agent

Created

Date Created
  • 2015

151081-Thumbnail Image.png

Research on the issues and solutions of China's law of prevention and control of atmospheric pollution

Description

ABSTRACT In recent years, the total amount of air pollutant emissions in China was reduced year by year, but pollution is still very serious, especially in some big cities where

ABSTRACT In recent years, the total amount of air pollutant emissions in China was reduced year by year, but pollution is still very serious, especially in some big cities where the environmental pollution has worsened in the last 20 years. The "Law of the People's Republic of China on the Prevention and Control of Atmospheric Pollution" ( LPCAP) was established in 1987. With the development of industrialization and air pollution changes, it had been revised twice in 1995 and 2000.The third revision of the law began in 2009 which was included in the "Eleventh five-year National People's Congress Standing legislative plan" and the State Council's 2009 legislative program. At present, the third revision of the LPCAP is in progress and MEP has completed the manuscript of the revised draft of the law. The purpose of this study is to explore the current situation of China's air pollution, as well as history of LPCAP, analysis of amendments in atmospheric legislation and the achievements of the LPCAP. Combined with China current situation, the research exposed some urgent problems of the Chinese atmospheric legislation which are related to: fã The issues of the regional Total Emission Control (TEC) policy and division. fã The issues of allocation of pollutant emission allowances and trade policy fã The issues of improving the pollution emission permit system. fã The issues of the mobile source emissions management. fã The issues of fuel management. fã The issues of the guarantee measures of the implementation of the LPCAP. In addition, the study compares the LPCAP with the U.S. CAA to offer some solutions for the third revised law and tries to find a fundamental solution for the flaws of China's existing Atmospheric Pollution Prevention legal system to be more Operable. As a result, the gap in air quality in China and the developed countries of the world will be narrowed and China will be better positioned for sustainable development.

Contributors

Agent

Created

Date Created
  • 2012

149661-Thumbnail Image.png

Maricopa County particulate matter source study

Description

Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3)

Maricopa County has exceeded the 24 hour National Ambient Air Quality Standard (NAAQS) for Particulate Matter 10 micrometers in diameter or smaller (PM-10) of 150 micrograms per meter cubed (μg/m3) since 1990. Construction and construction related activities have been recognized as the highest contributors to high PM-10 levels. An analysis of days exceeding 150 μg/m3 for four of Maricopa County‟s monitors that most frequently exceed this level during the years 2007, 2008, and 2009 has been performed. Noted contributors to PM-10 levels have been identified in the study, including earthmoving permits, stationary source permits, vacant lots, and agriculture on two mile radius maps around each monitor. PM-10 levels and wind speeds for each date exceeding 225 μg/m3 were reviewed to find specific weather or anthropogenic sources for the high PM-10 levels. Weather patterns for days where multiple monitors exceed 150 μg/m3 were reviewed to find correlations between daily weather and high PM-10 levels. It was found that areas with more earthmoving permits had fewer days exceeding 150 μg/m3 than areas with more stationary permits, vacant lots, or agriculture. The Higley and Buckeye monitors showed increases in PM-10 levels when winds came from areas covered by agricultural land. West 43rd Avenue and Durango monitors saw PM-10 rise when the winds came in over large stationary sources, like aggregate plants. A correlation between weather events and PM-10 exceedances was also found on multiple monitors for dates both in 2007, and 2009.

Contributors

Agent

Created

Date Created
  • 2011

150253-Thumbnail Image.png

The potential of coastal marine filtration as a feedstock source for biodiesel

Description

Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as

Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were isolated from the University of California, Santa Barbara (UCSB) seawater filtration system during weekly backwash events between the months of April and August, 2011. The quantity of organic material produced was determined by sample combustion and calculation of ash-free dry weights. Qualitative investigation required density gradient separation with the heavy liquid sodium metatungstate followed by direct transesterification and gas chromatography with mass spectrometry (GC-MS) of the fatty acid methyl esters (FAME) produced. A maximum of 0.083g/L of dried organic material was produced in a single backwash event and a study average of 0.036g/L was calculated. This equates to an average weekly value of 7,674.75g of dried organic material produced from the filtration of approximately 24,417,792 liters of seawater. Temporal variations were limited. Organic quantities decreased over the course of the study. Bio-fouling effects from mussel overgrowth inexplicably increased production values when compared to un-fouled seawater supply lines. FAMEs (biodiesel) averaged 0.004% of the dried organic material with 0.36ml of biodiesel produced per week, on average. C16:0 and C22:6n3 fatty acids comprised the majority of the fatty acids in the samples. Saturated fatty acids made up 30.71% to 44.09% and unsaturated forms comprised 55.90% to 66.32% of the total chemical composition. Both quantities and qualities of organics and FAMEs were unrealistic for use as biodiesel but sample size limitations, system design, geographic and temporal factors may have impacted study results.

Contributors

Agent

Created

Date Created
  • 2011

150264-Thumbnail Image.png

Study of collocated sources of air pollution and the potential for circumventing regulatory major source permitting requirements near Sun City, Arizona

Description

The following research is a regulatory and emissions analysis of collocated sources of air pollution as they relate to the definition of "major, stationary, sources", if their emissions were amalgamated.

The following research is a regulatory and emissions analysis of collocated sources of air pollution as they relate to the definition of "major, stationary, sources", if their emissions were amalgamated. The emitting sources chosen for this study are seven facilities located in a single, aggregate mining pit, along the Aqua Fria riverbed in Sun City, Arizona. The sources in question consist of Rock Crushing and Screening plants, Hot Mix Asphalt plants, and Concrete Batch plants. Generally, individual facilities with emissions of a criteria air pollutant over 100 tons per year or 70 tons per year for PM10 in the Maricopa County non-attainment area would be required to operate under a different permitting regime than those with emissions less than stated above. In addition, facility's that emit over 25 tons per year or 150 pounds per hour of NOx would trigger Maricopa County Best Available Control Technology (BACT) and would be required to install more stringent pollution controls. However, in order to circumvent the more stringent permitting requirements, some facilities have "collocated" in order to escape having their emissions calculated as single source, while operating as a single, production entity. The results of this study indicate that the sources analyzed do not collectively emit major source levels of emissions; however, they do trigger year and daily BACT for NOx. It was also discovered that lack of grid power contributes to the use of generators, which is the main source of emissions. Therefore, if grid electricity was introduced in outlying areas of Maricopa County, facilities could significantly reduce the use of generator power; thereby, reducing pollutants associated with generator use.

Contributors

Agent

Created

Date Created
  • 2011

150371-Thumbnail Image.png

A survey of the use of homemade overpressure chemical devices in several cities in the United States: determining the impact on the United States

Description

Homemade overpressure chemical devices, commonly known as bottle bombs, are a current topic in the news media. These homemade overpressure chemical devices are a variety of homemade chemical bombs which

Homemade overpressure chemical devices, commonly known as bottle bombs, are a current topic in the news media. These homemade overpressure chemical devices are a variety of homemade chemical bombs which are constructed by youth for amusement, mischief, or misbehaviors. These bombs are made from common household chemicals. The media is frequently presenting stories about the dangers of these homemade overpressure chemical devices. The media reports that this trend is spurred by the use of YouTube and other social media. As a result of the amount of information about homemade overpressure chemical devices on YouTube and other social media, youths can quickly learn how to fabricate and use these devices. However, these youths, like many in the community, are unaware of the hazards or legal consequences associated with this activity. At this time, reliable information about this form of homemade chemical bombs is limited. Therefore, this research project will explore the culture, fabrication, legality, and risks associated with these homemade chemical bombs. Then, the research will determine if the construction of these devices is a national problem as suggested by the news media and first responder organizations with an annually increasing number incidents, property damage, and injuries. The Center for Disease Control's Morbidity and Mortality Weekly Report for the week of July 18, 2003 presented the last and only known scientific attempt to determine the impact of homemade overpressure chemical devices on society. However, the Center for Disease Control was not able to get an accurate determination of the trends associated with homemade overpressure chemical devices due to the limitations of the data it reviewed. This research project looks at the data available from national databases, municipal databases, and the first responders of nine cities to determine the impact that Homemade Overpressure Chemical Devices are having on these communities within the United States. The research concluded that the number of Homemade Overpressure Chemical Devices cannot be gathered from either a national database or municipal databases. Interviews with first responders indicate that all areas of the United States are experiencing some Homemade Overpressure Chemical Device activity. However, this activity usually remains low until spurred on in a fad-like pattern.

Contributors

Agent

Created

Date Created
  • 2011

157581-Thumbnail Image.png

Geochemical analysis of the leachate generated after zero valent metals addition to municipal solid waste

Description

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to

Zero-Valent Metals (ZVM) are highly reactive materials and have been proved to be effective in contaminant reduction in soils and groundwater remediation. In fact, zero-Valent Iron (ZVI) has proven to be very effective in removing, particularly chlorinated organics, heavy metals, and odorous sulfides. Addition of ZVI has also been proved in enhancing the methane gas generation in anaerobic digestion of activated sludge. However, no studies have been conducted regarding the effect of ZVM stimulation to Municipal Solid Waste (MSW) degradation. Therefore, a collaborative study was developed to manipulate microbial activity in the landfill bioreactors to favor methane production by adding ZVMs. This study focuses on evaluating the effects of added ZVM on the leachate generated from replicated lab scale landfill bioreactors. The specific objective was to investigate the effects of ZVMs addition on the organic and inorganic pollutants in leachate. The hypothesis here evaluated was that adding ZVM including ZVI and Zero Valent Manganese (ZVMn) will enhance the removal rates of the organic pollutants present in the leachate, likely by a putative higher rate of microbial metabolism. Test with six (4.23 gallons) bioreactors assembled with MSW collected from the Salt River Landfill and Southwest Regional Landfill showed that under 5 grams /liter of ZVI and 0.625 grams/liter of ZVMn additions, no significant difference was observed in the pH and temperature data of the leachate generated from these reactors. The conductivity data suggested the steady rise across all reactors over the period of time. The removal efficiency of sCOD was highest (27.112 mg/lit/day) for the reactors added with ZVMn at the end of 150 days for bottom layer, however the removal rate was highest (16.955 mg/lit/day) for ZVI after the end of 150 days of the middle layer. Similar trends in the results was observed in TC analysis. HPLC study indicated the dominance of the concentration of heptanoate and isovalerate were leachate generated from the bottom layer across all reactors. Heptanoate continued to dominate in the ZVMn added leachate even after middle layer injection. IC analysis concluded the chloride was dominant in the leachate generated from all the reactors and there was a steady increase in the chloride content over the period of time. Along with chloride, fluoride, bromide, nitrate, nitrite, phosphate and sulfate were also detected in considerable concentrations. In the summary, the addition of the zero valent metals has proved to be efficient in removal of the organics present in the leachate.

Contributors

Agent

Created

Date Created
  • 2019