Matching Items (48)
156491-Thumbnail Image.png
Description
Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution

Portable devices often require multiple power management IC (PMIC) to power different sub-modules, Li-ion batteries are well suited for portable devices because of its small size, high energy density and long life cycle. Since Li-ion battery is the major power source for portable device, fast and high-efficiency battery charging solution has become a major requirement in portable device application.

In the first part of dissertation, a high performance Li-ion switching battery charger is proposed. Cascaded two loop (CTL) control architecture is used for seamless CC-CV transition, time based technique is utilized to minimize controller area and power consumption. Time domain controller is implemented by using voltage controlled oscillator (VCO) and voltage controlled delay line (VCDL). Several efficiency improvement techniques such as segmented power-FET, quasi-zero voltage switching (QZVS) and switching frequency reduction are proposed. The proposed switching battery charger is able to provide maximum 2 A charging current and has an peak efficiency of 93.3%. By configure the charger as boost converter, the charger is able to provide maximum 1.5 A charging current while achieving 96.3% peak efficiency.

The second part of dissertation presents a digital low dropout regulator (DLDO) for system on a chip (SoC) in portable devices application. The proposed DLDO achieve fast transient settling time, lower undershoot/overshoot and higher PSR performance compared to state of the art. By having a good PSR performance, the proposed DLDO is able to power mixed signal load. To achieve a fast load transient response, a load transient detector (LTD) enables boost mode operation of the digital PI controller. The boost mode operation achieves sub microsecond settling time, and reduces the settling time by 50% to 250 ns, undershoot/overshoot by 35% to 250 mV and 17% to 125 mV without compromising the system stability.
ContributorsLim, Chai Yong (Author) / Kiaei, Sayfe (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Ogras, Umit Y. (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2018
156773-Thumbnail Image.png
Description
As integrated technologies are scaling down, there is an increasing trend in the

process,voltage and temperature (PVT) variations of highly integrated RF systems.

Accounting for these variations during the design phase requires tremendous amount

of time for prediction of RF performance and optimizing it accordingly. Thus, there

is an increasing gap between the need

As integrated technologies are scaling down, there is an increasing trend in the

process,voltage and temperature (PVT) variations of highly integrated RF systems.

Accounting for these variations during the design phase requires tremendous amount

of time for prediction of RF performance and optimizing it accordingly. Thus, there

is an increasing gap between the need to relax the RF performance requirements at

the design phase for rapid development and the need to provide high performance

and low cost RF circuits that function with PVT variations. No matter how care-

fully designed, RF integrated circuits (ICs) manufactured with advanced technology

nodes necessitate lengthy post-production calibration and test cycles with expensive

RF test instruments. Hence design-for-test (DFT) is proposed for low-cost and fast

measurement of performance parameters during both post-production and in-eld op-

eration. For example, built-in self-test (BIST) is a DFT solution for low-cost on-chip

measurement of RF performance parameters. In this dissertation, three aspects of

automated test and calibration, including DFT mathematical model, BIST hardware

and built-in calibration are covered for RF front-end blocks.

First, the theoretical foundation of a post-production test of RF integrated phased

array antennas is proposed by developing the mathematical model to measure gain

and phase mismatches between antenna elements without any electrical contact. The

proposed technique is fast, cost-efficient and uses near-field measurement of radiated

power from antennas hence, it requires single test setup, it has easy implementation

and it is short in time which makes it viable for industrialized high volume integrated

IC production test.

Second, a BIST model intended for the characterization of I/Q offset, gain and

phase mismatch of IQ transmitters without relying on external equipment is intro-

duced. The proposed BIST method is based on on-chip amplitude measurement as

in prior works however,here the variations in the BIST circuit do not affect the target

parameter estimation accuracy since measurements are designed to be relative. The

BIST circuit is implemented in 130nm technology and can be used for post-production

and in-field calibration.

Third, a programmable low noise amplifier (LNA) is proposed which is adaptable

to different application scenarios depending on the specification requirements. Its

performance is optimized with regards to required specifications e.g. distance, power

consumption, BER, data rate, etc.The statistical modeling is used to capture the

correlations among measured performance parameters and calibration modes for fast

adaptation. Machine learning technique is used to capture these non-linear correlations and build the probability distribution of a target parameter based on measurement results of the correlated parameters. The proposed concept is demonstrated by

embedding built-in tuning knobs in LNA design in 130nm technology. The tuning

knobs are carefully designed to provide independent combinations of important per-

formance parameters such as gain and linearity. Minimum number of switches are

used to provide the desired tuning range without a need for an external analog input.
ContributorsShafiee, Maryam (Author) / Ozev, Sule (Thesis advisor) / Diaz, Rodolfo (Committee member) / Ogras, Umit Y. (Committee member) / Bakkaloglu, Bertan (Committee member) / Arizona State University (Publisher)
Created2018
156888-Thumbnail Image.png
Description
Flexible hybrid electronics (FHE) is emerging as a promising solution to combine the benefits of printed electronics and silicon technology. FHE has many high-impact potential areas, such as wearable applications, health monitoring, and soft robotics, due to its physical advantages, which include light weight, low cost and the ability conform

Flexible hybrid electronics (FHE) is emerging as a promising solution to combine the benefits of printed electronics and silicon technology. FHE has many high-impact potential areas, such as wearable applications, health monitoring, and soft robotics, due to its physical advantages, which include light weight, low cost and the ability conform to different shapes. However, physical deformations that can occur in the field lead to significant testing and validation challenges. For example, designers have to ensure that FHE devices continue to meet specs even when the components experience stress due to bending. Hence, physical deformation, which is hard to emulate, has to be part of the test procedures developed for FHE devices. This paper is the first to analyze stress experience at different parts of FHE devices under different bending conditions. Then develop a novel methodology to maximize the test coverage with minimum number of text vectors with the help of a mixed integer linear programming formulation.
ContributorsGao, Hang (Author) / Ozev, Sule (Thesis advisor) / Ogras, Umit Y. (Committee member) / Christen, Jennifer Blain (Committee member) / Arizona State University (Publisher)
Created2018
156894-Thumbnail Image.png
Description
Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus

Medical ultrasound imaging is widely used today because of it being non-invasive and cost-effective. Flow estimation helps in accurate diagnosis of vascular diseases and adds an important dimension to medical ultrasound imaging. Traditionally flow estimation is done using Doppler-based methods which only estimate velocity in the beam direction. Thus when blood vessels are close to being orthogonal to the beam direction, there are large errors in the estimation results. In this dissertation, a low cost blood flow estimation method that does not have the angle dependency of Doppler-based methods, is presented.

First, a velocity estimator based on speckle tracking and synthetic lateral phase is proposed for clutter-free blood flow.

Speckle tracking is based on kernel matching and does not have any angle dependency. While velocity estimation in axial dimension is accurate, lateral velocity estimation is challenging due to reduced resolution and lack of phase information. This work presents a two tiered method which estimates the pixel level movement using sum-of-absolute difference, and then estimates the sub-pixel level using synthetic phase information in the lateral dimension. Such a method achieves highly accurate velocity estimation with reduced complexity compared to a cross correlation based method. The average bias of the proposed estimation method is less than 2% for plug flow and less than 7% for parabolic flow.

Blood is always accompanied by clutter which originates from vessel wall and surrounding tissues. As magnitude of the blood signal is usually 40-60 dB lower than magnitude of the clutter signal, clutter filtering is necessary before blood flow estimation. Clutter filters utilize the high magnitude and low frequency features of clutter signal to effectively remove them from the compound (blood + clutter) signal. Instead of low complexity FIR filter or high complexity SVD-based filters, here a power/subspace iteration based method is proposed for clutter filtering. Excellent clutter filtering performance is achieved for both slow and fast moving clutters with lower complexity compared to SVD-based filters. For instance, use of the proposed method results in the bias being less than 8% and standard deviation being less than 12% for fast moving clutter when the beam-to-flow-angle is $90^o$.

Third, a flow rate estimation method based on kernel power weighting is proposed. As the velocity estimator is a kernel-based method, the estimation accuracy degrades near the vessel boundary. In order to account for kernels that are not fully inside the vessel, fractional weights are given to these kernels based on their signal power. The proposed method achieves excellent flow rate estimation results with less than 8% bias for both slow and fast moving clutters.

The performance of the velocity estimator is also evaluated for challenging models. A 2D version of our two-tiered method is able to accurately estimate velocity vectors in a spinning disk as well as in a carotid bifurcation model, both of which are part of the synthetic aperture vector flow imaging (SA-VFI) challenge of 2018. In fact, the proposed method ranked 3rd in the challenge for testing dataset with carotid bifurcation. The flow estimation method is also evaluated for blood flow in vessels with stenosis. Simulation results show that the proposed method is able to estimate the flow rate with less than 9% bias.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Ogras, Umit Y. (Committee member) / Wenisch, Thomas F. (Committee member) / Arizona State University (Publisher)
Created2018
156844-Thumbnail Image.png
Description
This dissertation proposes and presents two different passive sigma-delta

modulator zoom Analog to Digital Converter (ADC) architectures. The first ADC is fullydifferential, synthesizable zoom-ADC architecture with a passive loop filter for lowfrequency Built in Self-Test (BIST) applications. The detailed ADC architecture and a step

by step process designing the zoom-ADC along with

This dissertation proposes and presents two different passive sigma-delta

modulator zoom Analog to Digital Converter (ADC) architectures. The first ADC is fullydifferential, synthesizable zoom-ADC architecture with a passive loop filter for lowfrequency Built in Self-Test (BIST) applications. The detailed ADC architecture and a step

by step process designing the zoom-ADC along with a synthesis tool that can target various

design specifications are presented. The design flow does not rely on extensive knowledge

of an experienced ADC designer. Two example set of BIST ADCs have been synthesized

with different performance requirements in 65nm CMOS process. The first ADC achieves

90.4dB Signal to Noise Ratio (SNR) in 512µs measurement time and consumes 17µW

power. Another example achieves 78.2dB SNR in 31.25µs measurement time and

consumes 63µW power. The second ADC architecture is a multi-mode, dynamically

zooming passive sigma-delta modulator. The architecture is based on a 5b interpolating

flash ADC as the zooming unit, and a passive discrete time sigma delta modulator as the

fine conversion unit. The proposed ADC provides an Oversampling Ratio (OSR)-

independent, dynamic zooming technique, employing an interpolating zooming front-end.

The modulator covers between 0.1 MHz and 10 MHz signal bandwidth which makes it

suitable for cellular applications including 4G radio systems. By reconfiguring the OSR,

bias current, and component parameters, optimal power consumption can be achieved for

every mode. The ADC is implemented in 0.13 µm CMOS technology and it achieves an

SNDR of 82.2/77.1/74.2/68 dB for 0.1/1.92/5/10MHz bandwidth with 1.3/5.7/9.6/11.9mW

power consumption from a 1.2 V supply.
ContributorsEROL, OSMAN EMIR (Author) / Ozev, Sule (Thesis advisor) / Kitchen, Jennifer (Committee member) / Ogras, Umit Y. (Committee member) / Blain-Christen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2018
153829-Thumbnail Image.png
Description
The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape

The reduced availability of 3He is a motivation for developing alternative neutron detectors. 6Li-enriched CLYC (Cs2LiYCl6), a scintillator, is a promising candidate to replace 3He. The neutron and gamma ray signals from CLYC have different shapes due to the slower decay of neutron pulses. Some of the well-known pulse shape discrimination techniques are charge comparison method, pulse gradient method and frequency gradient method. In the work presented here, we have applied a normalized cross correlation (NCC) approach to real neutron and gamma ray pulses produced by exposing CLYC scintillators to a mixed radiation environment generated by 137Cs, 22Na, 57Co and 252Cf/AmBe at different event rates. The cross correlation analysis produces distinctive results for measured neutron pulses and gamma ray pulses when they are cross correlated with reference neutron and/or gamma templates. NCC produces good separation between neutron and gamma rays at low (< 100 kHz) to mid event rate (< 200 kHz). However, the separation disappears at high event rate (> 200 kHz) because of pileup, noise and baseline shift. This is also confirmed by observing the pulse shape discrimination (PSD) plots and figure of merit (FOM) of NCC. FOM is close to 3, which is good, for low event rate but rolls off significantly along with the increase in the event rate and reaches 1 at high event rate. Future efforts are required to reduce the noise by using better hardware system, remove pileup and detect the NCC shapes of neutron and gamma rays using advanced techniques.
ContributorsChandhran, Premkumar (Author) / Holbert, Keith E. (Thesis advisor) / Spanias, Andreas (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2015
154858-Thumbnail Image.png
Description
Historically, wireless communication devices have been developed to process one specific waveform. In contrast, a modern cellular phone supports multiple waveforms corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is controlled by software running on a general purpose processor, not by the user. Now, instead of

Historically, wireless communication devices have been developed to process one specific waveform. In contrast, a modern cellular phone supports multiple waveforms corresponding to LTE, WCDMA(3G) and 2G standards. The selection of the network is controlled by software running on a general purpose processor, not by the user. Now, instead of selecting from a set of complete radios as in software controlled radio, what if the software could select the building blocks based on the user needs. This is the new software-defined flexible radio which would enable users to construct wireless systems that fit their needs, rather than forcing to use from a small set of pre-existing protocols.

To develop and implement flexible protocols, a flexible hardware very similar to a Software Defined Radio (SDR) is required. In this thesis, the Intel T2200 board is chosen as the SDR platform. It is a heterogeneous platform with ARM, CEVA DSP and several accelerators. A wide range of protocols is mapped onto this platform and their performance evaluated. These include two OFDM based protocols (WiFi-Lite-A, WiFi-Lite-B), one DFT-spread OFDM based protocol (SCFDM-Lite) and one single carrier based protocol (SC-Lite). The transmitter and receiver blocks of the different protocols are first mapped on ARM in the T2200 board. The timing results show that IFFT, FFT, and Viterbi decoder blocks take most of the transmitter and receiver execution time and so in the next step these are mapped onto CEVA DSP. Mapping onto CEVA DSP resulted in significant execution time savings. The savings for WiFi-Lite-A were 60%, for WiFi-Lite-B were 64%, and for SCFDM-Lite were 71.5%. No savings are reported for SC-Lite since it was not mapped onto CEVA DSP.

Significant reduction in execution time is achieved for WiFi-Lite-A and WiFi-Lite-B protocols by implementing the entire transmitter and receiver chains on CEVA DSP. For instance, for WiFi-Lite-A, the savings were as large as 90%. Such huge savings are because the entire transmitter or receiver chain are implemented on CEVA and the timing overhead due to ARM-CEVA communication is completely eliminated. Finally, over-the-air testing was done for WiFi-Lite-A and WiFi-Lite-B protocols. Data was sent over the air using one Intel T2200 WBS board and received using another Intel T2200 WBS board. The received frames were decoded with no errors, thereby validating the over-the-air-communications.
ContributorsChagari, Vamsi Reddy (Author) / Chakrabarti, Chaitali (Thesis advisor) / Lee, Hyunseok (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2016
155058-Thumbnail Image.png
Description
Coarse-grained Reconfigurable Arrays (CGRAs) are promising accelerators capable

of accelerating even non-parallel loops and loops with low trip-counts. One challenge

in compiling for CGRAs is to manage both recurring and nonrecurring variables in

the register file (RF) of the CGRA. Although prior works have managed recurring

variables via rotating RF, they access the nonrecurring

Coarse-grained Reconfigurable Arrays (CGRAs) are promising accelerators capable

of accelerating even non-parallel loops and loops with low trip-counts. One challenge

in compiling for CGRAs is to manage both recurring and nonrecurring variables in

the register file (RF) of the CGRA. Although prior works have managed recurring

variables via rotating RF, they access the nonrecurring variables through either a

global RF or from a constant memory. The former does not scale well, and the latter

degrades the mapping quality. This work proposes a hardware-software codesign

approach in order to manage all the variables in a local nonrotating RF. Hardware

provides modulo addition based indexing mechanism to enable correct addressing

of recurring variables in a nonrotating RF. The compiler determines the number of

registers required for each recurring variable and configures the boundary between the

registers used for recurring and nonrecurring variables. The compiler also pre-loads

the read-only variables and constants into the local registers in the prologue of the

schedule. Synthesis and place-and-route results of the previous and the proposed RF

design show that proposed solution achieves 17% better cycle time. Experiments of

mapping several important and performance-critical loops collected from MiBench

show proposed approach improves performance (through better mapping) by 18%,

compared to using constant memory.
ContributorsDave, Shail (Author) / Shrivastava, Aviral (Thesis advisor) / Ren, Fengbo (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2016
155791-Thumbnail Image.png
Description
Caches pose a serious limitation in scaling many-core architectures since the demand of area and power for maintaining cache coherence increases rapidly with the number of cores. Scratch-Pad Memories (SPMs) provide a cheaper and lower power alternative that can be used to build a more scalable many-core architecture. The trade-off

Caches pose a serious limitation in scaling many-core architectures since the demand of area and power for maintaining cache coherence increases rapidly with the number of cores. Scratch-Pad Memories (SPMs) provide a cheaper and lower power alternative that can be used to build a more scalable many-core architecture. The trade-off of substituting SPMs for caches is however that the data must be explicitly managed in software. Heap management on SPM poses a major challenge due to the highly dynamic nature of of heap data access. Most existing heap management techniques implement a software caching scheme on SPM, emulating the behavior of hardware caches. The state-of-the-art heap management scheme implements a 4-way set-associative software cache on SPM for a single program running with one thread on one core. While the technique works correctly, it suffers from signifcant performance overhead. This paper presents a series of compiler-based efficient heap management approaches that reduces heap management overhead through several optimization techniques. Experimental results on benchmarks from MiBenchGuthaus et al. (2001) executed on an SMM processor modeled in gem5Binkert et al. (2011) demonstrate that our approach (implemented in llvm v3.8Lattner and Adve (2004)) can improve execution time by 80% on average compared to the previous state-of-the-art.
ContributorsLin, Jinn-Pean (Author) / Shrivastava, Aviral (Thesis advisor) / Ren, Fengbo (Committee member) / Ogras, Umit Y. (Committee member) / Arizona State University (Publisher)
Created2017
155894-Thumbnail Image.png
Description
In this work, a 12-bit ADC with three types of calibration is proposed for high speed security applications as well as a precision application. This converter performs for both applications because it satisfies all the necessary specifications such as minimal device mismatch and offset, programmability to decrease aging effects, high

In this work, a 12-bit ADC with three types of calibration is proposed for high speed security applications as well as a precision application. This converter performs for both applications because it satisfies all the necessary specifications such as minimal device mismatch and offset, programmability to decrease aging effects, high SNR for increased ENOB and fast conversion rate. The designed converter implements three types of calibration necessary for offset and gain error, including: a correlated double sampling integrator used in the first stage of the ADC, a power up auto zero technique implemented in the digital code to store any offset and subtract out if necessary, and an automatic startup and manual calibration to control the common mode voltages. The proposed ADC was designed in Intel’s 10nm technology. This ADC is designed to monitor DC voltages for the precision and high speed applications. The conversion rate of the analog to digital converter is programmable to 7µs or 910ns, depending on the precision or high speed application, respectively. The range of the input and reference supply is 0 to 1.25V. The ADC is designed in Intel 10nm technology using a 1.8V supply consuming an area of 0.0705mm2. This thesis explores challenges of designing a dual-purpose analog to digital converter, which include: 1.) increased offset in 10nm technology, 2.) dual application ADC that can be accurate and fast, 3.) reducing the parasitic capacitance of the ADC, and 4.) gain error that occurs in ADCs.
ContributorsSchmelter, Brooke (Author) / Bakkaloglu, Bertan (Thesis advisor) / Ogras, Umit Y. (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2017