Matching Items (2)

128413-Thumbnail Image.png

Time-Frequency Analysis of Peptide Microarray Data: Application to Brain Cancer Immunosignatures

Description

One of the gravest dangers facing cancer patients is an extended symptom-free lull between tumor initiation and the first diagnosis. Detection of tumors is critical for effective intervention. Using the

One of the gravest dangers facing cancer patients is an extended symptom-free lull between tumor initiation and the first diagnosis. Detection of tumors is critical for effective intervention. Using the body’s immune system to detect and amplify tumor-specific signals may enable detection of cancer using an inexpensive immunoassay. Immunosignatures are one such assay: they provide a map of antibody interactions with random-sequence peptides. They enable detection of disease-specific patterns using classic train/test methods. However, to date, very little effort has gone into extracting information from the sequence of peptides that interact with disease-specific antibodies. Because it is difficult to represent all possible antigen peptides in a microarray format, we chose to synthesize only 330,000 peptides on a single immunosignature microarray. The 330,000 random-sequence peptides on the microarray represent 83% of all tetramers and 27% of all pentamers, creating an unbiased but substantial gap in the coverage of total sequence space. We therefore chose to examine many relatively short motifs from these random-sequence peptides. Time-variant analysis of recurrent subsequences provided a means to dissect amino acid sequences from the peptides while simultaneously retaining the antibody–peptide binding intensities. We first used a simple experiment in which monoclonal antibodies with known linear epitopes were exposed to these random-sequence peptides, and their binding intensities were used to create our algorithm. We then demonstrated the performance of the proposed algorithm by examining immunosignatures from patients with Glioblastoma multiformae (GBM), an aggressive form of brain cancer. Eight different frameshift targets were identified from the random-sequence peptides using this technique. If immune-reactive antigens can be identified using a relatively simple immune assay, it might enable a diagnostic test with sufficient sensitivity to detect tumors in a clinically useful way.

Contributors

Agent

Created

Date Created
  • 2015-06-18

153209-Thumbnail Image.png

Biology-based matched signal processing and physics-based modeling for improved detection

Description

Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used

Peptide microarrays have been used in molecular biology to profile immune responses and develop diagnostic tools. When the microarrays are printed with random peptide sequences, they can be used to identify antigen antibody binding patterns or immunosignatures. In this thesis, an advanced signal processing method is proposed to estimate epitope antigen subsequences as well as identify mimotope antigen subsequences that mimic the structure of epitopes from random-sequence peptide microarrays. The method first maps peptide sequences to linear expansions of highly-localized one-dimensional (1-D) time-varying signals and uses a time-frequency processing technique to detect recurring patterns in subsequences. This technique is matched to the aforementioned mapping scheme, and it allows for an inherent analysis on how substitutions in the subsequences can affect antibody binding strength. The performance of the proposed method is demonstrated by estimating epitopes and identifying potential mimotopes for eight monoclonal antibody samples.

The proposed mapping is generalized to express information on a protein's sequence location, structure and function onto a highly localized three-dimensional (3-D) Gaussian waveform. In particular, as analysis of protein homology has shown that incorporating different kinds of information into an alignment process can yield more robust alignment results, a pairwise protein structure alignment method is proposed based on a joint similarity measure of multiple mapped protein attributes. The 3-D mapping allocates protein properties into distinct regions in the time-frequency plane in order to simplify the alignment process by including all relevant information into a single, highly customizable waveform. Simulations demonstrate the improved performance of the joint alignment approach to infer relationships between proteins, and they provide information on mutations that cause changes to both the sequence and structure of a protein.

In addition to the biology-based signal processing methods, a statistical method is considered that uses a physics-based model to improve processing performance. In particular, an externally developed physics-based model for sea clutter is examined when detecting a low radar cross-section target in heavy sea clutter. This novel model includes a process that generates random dynamic sea clutter based on the governing physics of water gravity and capillary waves and a finite-difference time-domain electromagnetics simulation process based on Maxwell's equations propagating the radar signal. A subspace clutter suppression detector is applied to remove dominant clutter eigenmodes, and its improved performance over matched filtering is demonstrated using simulations.

Contributors

Agent

Created

Date Created
  • 2014