Matching Items (3)

151615-Thumbnail Image.png

Cellular mechanisms underlying the effects of repeated D₂-like agonist treatment on prepulse Inhibition

Description

Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is

Patients with schizophrenia have deficits in sensorimotor gating, the ability to gate out irrelevant stimuli in order to attend to relevant stimuli. Prepulse inhibition (PPI) of the startle response is a reliable and valid model of sensorimotor gating across species. Repeated D2-like agonist treatment alleviates prior PPI deficits in rats, termed a PPI recovery, and is observable 28 days after treatment. The aim of the current project is to illuminate the underlying mechanism for this persistent change of behavior and determine the clinical relevance of repeated D2-like agonist treatment. Our results revealed a significant increase in Delta FosB, a transcription factor, in the nucleus accumbens (NAc) 10 days after repeated D2-like agonist treatment. Additionally, we investigated if Delta FosB was necessary for long-lasting PPI recovery and discovered a bilateral infusion of dominant-negative Delta JunD prevented PPI recovery after repeated D2-like agonist treatment. To further develop the underlying mechanism of PPI recovery, we observed that dominant negative mutant cyclic adenosine monophosphate (cAMP) response biding element protein (CREB) prevented repeated D2-like agonist-induced Delta FosB expression in the NAc. We then compared our previous behavioral and intracellular findings to the results of repeated aripiprazole, a novel D2-like partial agonist antipsychotic, to determine if repeated D2-like receptor agonist action is a clinically relevant pharmacological approach. As compared to previous PPI recovery and Delta FosB expression after repeated D2-like agonist treatment, we found similar PPI recovery and Delta FosB expression after repeated aripiprazole treatment in rats. We can conclude that repeated D2-like agonist treatment produces persistent PPI recovery through CREB phosphorylation and Delta FosB, which is necessary for PPI recovery. Furthermore, this pharmacological approach produces behavioral and intracellular changes similar to an effective novel antipsychotic. These findings suggest the underlying intracellular mechanism for sustained PPI recovery is clinically relevant and may be a potential target of therapeutic intervention to alleviate sensorimotor gating deficits, which are associated with cognitive symptoms of schizophrenia.

Contributors

Agent

Created

Date Created
  • 2013

153989-Thumbnail Image.png

Prosocial influences on nicotine reinforcement, reward, and neural signaling in rodent models

Description

Social influences are important determinants of drug initiation in humans, particularly during adolescence and early adulthood. My dissertation tested three hypotheses: 1) conditioned and unconditioned nicotine and social rewards

Social influences are important determinants of drug initiation in humans, particularly during adolescence and early adulthood. My dissertation tested three hypotheses: 1) conditioned and unconditioned nicotine and social rewards elicit unique patterns of neural signaling in the corticolimbic neurocircuitry when presented in combination versus individually; 2) play behavior is not necessary for expression of social reward; and 3) social context enhances nicotine self-administration. To test the first hypothesis, Fos protein was measured in response to social and nicotine reward stimuli given alone or in combination and in response to environmental cues associated with the rewards in a conditioned place preference (CPP) test. Social-conditioned environmental stimuli attenuated Fos expression in the nucleus accumbens core. A social partner elevated Fos expression in the caudate-putamen, medial and central amygdala, and both nucleus accumbens subregions. Nicotine decreased Fos expression in the cingulate cortex, caudate-putamen, and the nucleus accumbens core. Both stimuli combined elevated Fos expression in the basolateral amygdala and ventral tegmental area, suggesting possible overlap in processing both rewards in these regions. I tested the second hypothesis with an apparatus containing compartments separated by a wire mesh barrier that allowed limited physical contact with a rat or object. While 2 pairings with a partner rat (full physical contact) produced robust CPP, additional pairings were needed for CPP with a partner behind a barrier or physical contact with an object (i.e., tennis ball). The results demonstrate that physical contact with a partner rat is not necessary to establish social-reward CPP. I tested the third hypothesis with duplex operant conditioning chambers separated either by a solid or a wire mesh barrier to allow for social interaction during self-administration sessions. Nicotine (0.015 and 0.03 mg/kg, IV) and saline self-administration were assessed in male and female young-adult rats either in the social context or isolation. Initially, a social context facilitated nicotine intake at the low dose in male rats, but suppressed intake in later sessions more strongly in female rats, suggesting that social factors exert strong sex-dependent influences on self-administration. These novel findings highlight the importance of social influences on several nicotine-related behavioral paradigms and associated neurocircuitry.

Contributors

Agent

Created

Date Created
  • 2015

158536-Thumbnail Image.png

Mesolimbic GluA1 AMPA Receptor Signaling in Dopaminergic Neurons Plays a Critical Role in the Induction of Cross-Sensitization to Psychostimulants in Response to Social Stress

Description

Intermittent social defeat stress induces psychostimulant cross-sensitization, as well as long-lasting social avoidance behavior. Previous data reveal heightened expression of AMPA receptor (AMPAR) GluA1 subunits in rat ventral tegmental area

Intermittent social defeat stress induces psychostimulant cross-sensitization, as well as long-lasting social avoidance behavior. Previous data reveal heightened expression of AMPA receptor (AMPAR) GluA1 subunits in rat ventral tegmental area (VTA), which occurs concurrently with social stress-induced amphetamine (AMPH) cross-sensitization. These studies described herein examined whether VTA GluA1 AMPARs are important for the behavioral consequences of social stress and investigated the role of the infralimbic (IL) to VTA pathway in the induction of these responses. Functional inactivation of GluA1 in VTA DA neurons prevented stress-induced AMPH sensitization without affecting social avoidance behavior, while GluA1 overexpression in VTA DA neurons mimicked the effects of stress on AMPH sensitization. Female rats were more sensitive to the effects of stress on AMPH administration than males, specifically during proestrus/estrus, which is characterized by higher circulating estradiol. Fluorescent immunohistochemistry revealed that females expressed higher GluA1 in VTA DA neurons as a result of intermittent social defeat stress, independent of estrus stage; by contrast, females during proestrus/estrus displayed higher tyrosine kinase receptor type 2 (TrkB) expression, which is the receptor for brain derived neurotrophic factor (BDNF), in VTA DA neurons, independent of stress exposure. Functional inactivation of GluA1 in VTA DA neurons prevented stress-induced AMPH sensitization and overexpression mimicked the effects of stress on AMPH sensitization. This suggests that BDNF-TrkB signaling may work concomitantly with GluA1 signaling in the VTA to drive sex-dependent differences in stress-induced locomotor sensitization effects. Optogenetic inhibition of the IL-VTA pathway in male rats prevented stress-induced AMPH sensitization compared to control animals. In addition, fluorescent immunohistochemistry displayed less Fos labeling in the nucleus accumbens (NAc) of rats with IL-VTA light inhibition compared to control animals. This suggests that the IL-VTA pathway plays a critical role in the induction of stress-induced sensitivity to AMPH, and blocking this pathway prevents mesolimbic DA signaling to the NAc. We conclude that IL glutamate projections onto GluA1-homomeric AMPA receptors in VTA DA neurons play a critical role in driving the stress-induced sensitization response in males and females. Therefore, GluA1 VTA DA neurons could potentially be a therapeutic target to prevent stress-induced drug susceptibility in the future.

Contributors

Agent

Created

Date Created
  • 2020