Matching Items (3)
150556-Thumbnail Image.png
Description
In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to

In this work, I worked on the synthesis and characterization of nanowires and belts, grown using different materials, in Chemical Vapor Deposition (CVD) system with catalytic growth method. Through this thesis, I utilized the Photoluminescence (PL), Secondary Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analyses to find out the properties of Erbium Chloride Silicate (ECS) and two segment CdS-CdSe samples. In the first part of my research, growth of very new material, Erbium Chloride Silicate (ECS), in form of core/shell Si/ECS and pure ECS nanowires, was demonstrated. This new material has very fascinating properties for new Si based photonic devices. The Erbium density in those nanowires is which is very high value compared to the other Erbium doped materials. It was shown that the luminescence peaks of ECS nanowires are very sharp and stronger than their counterparts. Furthermore, both PL and XRD peaks get sharper and stronger as growth temperature increases and this shows that crystalline quality of ECS nanowires gets better with higher temperature. In the second part, I did a very detail research for growing two segment axial nanowires or radial belts and report that the structure type mostly depends on the growth temperature. Since our final step is to create white light LEDs using single axial nanowires which have three different regions grown with distinct materials and give red, green and blue colors simultaneously, we worked on growing CdS-CdSe nanowires or belts for the first step of our aim. Those products were successfully grown and they gave two luminescence peaks with maximum 160 nm wavelength separation depending on the growth conditions. It was observed that products become more likely belt once the substrate temperature increases. Also, dominance between VLS and VS is very critical to determine the shape of the products and the substitution of CdS by CdSe is very effective; hence, CdSe growth time should be chosen accordingly. However, it was shown two segmented products can be synthesized by picking the right conditions and with very careful analyses. We also demonstrated that simultaneous two colors lasing from a single segmented belt structures is possible with strong enough-pumping-power.
ContributorsTurkdogan, Sunay (Author) / Ning, Cun-Zheng (Thesis advisor) / Tao, Meng (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
129642-Thumbnail Image.png
Description

The ability of a single monolithic semiconductor structure to emit or lase in a broad spectrum range is of great importance for many applications such as solid-state lighting and multi-spectrum detection. But spectral range of a laser or light-emitting diode made of a given semiconductor is typically limited by its

The ability of a single monolithic semiconductor structure to emit or lase in a broad spectrum range is of great importance for many applications such as solid-state lighting and multi-spectrum detection. But spectral range of a laser or light-emitting diode made of a given semiconductor is typically limited by its emission or gain bandwidth. Due to lattice mismatch, it is typically difficult to grow thin film or bulk materials with very different bandgaps in a monolithic fashion. But nanomaterials such as nanowires, nanobelts, nanosheets provide a unique opportunity. Here we report our experimental results demonstrating simultaneous lasing in two visible colors at 526 and 623 nm from a single CdSSe heterostructure nanosheet at room temperature. The 97 nm wavelength separation of the two colors is significantly larger than the gain bandwidth of a typical single II-VI semiconductor material. Such lasing and light emission in a wide spectrum range from a single monolithic structure will have important applications mentioned above.

ContributorsFan, Fan (Author) / Liu, Zicheng (Author) / Yin, Leijun (Author) / Nichols, Patricia L. (Author) / Ning, H. (Author) / Turkdogan, Sunay (Author) / Ning, Cun-Zheng (Author) / Ira A. Fulton Schools of Engineering (Contributor)
Created2013-10-28
153881-Thumbnail Image.png
Description
In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system.

In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study

In this dissertation, I described my research on the growth and characterization of various nanostructures, such as nanowires, nanobelts and nanosheets, of different semiconductors in a Chemical Vapor Deposition (CVD) system.

In the first part of my research, I selected chalcogenides (such as CdS and CdSe) for a comprehensive study in growing two-segment axial nanowires and radial nanobelts/sheets using the ternary CdSxSe1-x alloys. I demonstrated simultaneous red (from CdSe-rich) and green (from CdS-rich) light emission from a single monolithic heterostructure with a maximum wavelength separation of 160 nm. I also demonstrated the first simultaneous two-color lasing from a single nanosheet heterostructure with a wavelength separation of 91 nm under sufficiently strong pumping power.

In the second part, I considered several combinations of source materials with different growth methods in order to extend the spectral coverage of previously demonstrated structures towards shorter wavelengths to achieve full-color emissions. I achieved this with the growth of multisegment heterostructure nanosheets (MSHNs), using ZnS and CdSe chalcogenides, via our novel growth method. By utilizing this method, I demonstrated the first growth of ZnCdSSe MSHNs with an overall lattice mismatch of 6.6%, emitting red, green and blue light simultaneously, in a single furnace run using a simple CVD system. The key to this growth method is the dual ion exchange process which converts nanosheets rich in CdSe to nanosheets rich in ZnS, demonstrated for the first time in this work. Tri-chromatic white light emission with different correlated color temperature values was achieved under different growth conditions. We demonstrated multicolor (191 nm total wavelength separation) laser from a single monolithic semiconductor nanostructure for the first time. Due to the difficulties associated with growing semiconductor materials of differing composition on a given substrate using traditional planar epitaxial technology, our nanostructures and growth method are very promising for various device applications, including but not limited to: illumination, multicolor displays, photodetectors, spectrometers and monolithic multicolor lasers.
ContributorsTurkdogan, Sunay (Author) / Ning, Cun Zheng (Thesis advisor) / Palais, Joseph C. (Committee member) / Yu, Hongbin (Committee member) / Mardinly, A. John (Committee member) / Arizona State University (Publisher)
Created2015