Matching Items (54)
155573-Thumbnail Image.png
Description
Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed E3 ubiquitin ligase (UBE3A, also known as E6 associated protein, E6-AP) in neurons. Currently, the mechanism on how loss-of-function of

Angelman syndrome (AS) is a neurodevelopmental disorder characterized by developmental delays, intellectual disabilities, impaired language and speech, and movement defects. Most AS cases are caused by dysfunction of a maternally-expressed E3 ubiquitin ligase (UBE3A, also known as E6 associated protein, E6-AP) in neurons. Currently, the mechanism on how loss-of-function of the enzyme influences the nervous system development remains unknown. We hypothesize that impaired metabolism of proteins, most likely those related to E6-AP substrates, may alter the developmental trajectory of neuronal structures including dendrites, spines and synaptic proteins, which leads to disrupted activity/experience-dependent synaptic plasticity and maturation. To test this hypothesis, we conducted a detailed investigation on neuronal morphology and electrophysiological properties in the prefrontal cortex (PFC) layer 5 (L5) corticostriatal pyramidal neurons (target neurons). We found smaller soma size in the maternal Ube3a deficient mice (m-/p+; 'AS' mice) at postnatal 17-19 (P17-19), P28-35 and older than 70 days (>P70), and decreased basal dendritic processes at P28-35. Surprisingly, both excitatory and inhibitory miniature postsynaptic currents (mEPSCs and mIPSCs) decreased on these neurons. These neurons also exhibited abnormalities in the local neural circuits, short-term synaptic plasticity and AMPA/NMDA ratio: the excitatory inputs from L2/3 and L5A, and inhibitory inputs from L5 significantly reduced in AS mice from P17-19; Both the release probability (Pr) and readily-releasable vesicle (RRV) pool replenishment of presynaptic neurons of the target neurons were disrupted at P17-19 and P28-35, and the change of RRV pool replenishment maintained through adulthood (>P70). The AMPA/NMDA ratio showed abnormality in the L5 corticostriatal neurons of PFC in AS mice older than P28-35, during which it decreased significantly compared to that of age-matched WT littermates. Western Blot analysis revealed that the expression level of a key regulator of the cytoskeleton system, Rho family small GTPase cell division control protein 42 homolog (cdc42), reduced significantly in the PFC of AS mice at P28-35.These impairments of synaptic transmission and short-term synaptic plasticity may account for the impaired neuronal morphology and synaptic deficits observed in the PFC target neurons, and contribute to the phenotypes in AS model mice. The present work reveals for the first time that the E6-AP deficiency influences brain function in both brain region-specific and age-dependent ways, demonstrates the functional impairment at the neural circuit level, and reveals that the presynaptic mechanisms are disrupted in AS model. These novel findings shed light on our understanding of the AS pathogenesis and inform potential novel therapeutic explorations.
ContributorsLi, Guohui (Author) / Qiu, Shenfeng (Thesis advisor) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2017
135780-Thumbnail Image.png
Description
Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown.

Duchenne Muscular Dystrophy (DMD) is an X-linked recessive disease characterized by progressive muscle loss and weakness. This disease arises from a mutation that occurs on a gene that encodes for dystrophin, which results in observable muscle death and inflammation; however, the genetic changes that result from dystrophin's dysfunctionality remain unknown. Current DMD research uses mdx mice as a model, and while very useful, does not allow the study of cell-autonomous transcriptome changes during the progression of DMD due to the strong inflammatory response, perhaps hiding important therapeutic targets. C. elegans, which has a very weak inflammatory response compared to mdx mice and humans, has been used in the past to study DMD with some success. The worm ortholog of the dystrophin gene has been identified as dys-1 since its mutation phenocopies the progression of the disease and a portion of the human dystrophin gene alleviates symptoms. Importantly, the extracted RNA transcriptome from dys-1 worms showed significant change in gene expression, which needs to be further investigated with the development of a more robust model. Our lab previously published a method to isolate high-quality muscle-specific RNA from worms, which could be used to study such changes at higher resolution. We crossed the dys-1 worms with our muscle-specific strain and demonstrated that the chimeric strain exhibits similar behavioral symptoms as DMD patients as characterized by a shortened lifespan, difficulty in movement, and a decrease in speed. The presence of dys-1 and other members of the dystrophin complex in the body muscle were supported by the development of a resulting phenotype due to RNAi knockdown of each component in the body muscle; however, further experimentation is needed to reinforce this conclusion. Thus, the constructed chimeric C. elegans strain possesses unique characteristics that will allow the study of genetic changes, such as transcriptome rearrangements and dysregulation of miRNA, and how they affect the progression of DMD.
ContributorsNguyen, Thuy-Duyen Cao (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Duchaine, Thomas (Committee member) / School of Social Transformation (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148494-Thumbnail Image.png
Description

Neurological manifestations may be more prominent and have a larger role in ankylosing spondylitis than previously thought. Ankylosing Spondylitis is a rheumatic disease primarily identified by its autoinflammatory characteristics and is highly associated with the HLA-B27 gene. While it’s cause is not yet fully understood and it’s symptoms widely vary,

Neurological manifestations may be more prominent and have a larger role in ankylosing spondylitis than previously thought. Ankylosing Spondylitis is a rheumatic disease primarily identified by its autoinflammatory characteristics and is highly associated with the HLA-B27 gene. While it’s cause is not yet fully understood and it’s symptoms widely vary, neurological impairment is not uncommon. The neurological manifestations of Ankylosing Spondylitis include but are not limited to pain sensitization, altered brain phenotype, and disrupted cardiac conduction. Central and peripheral nervous system involvement may be more significant than previously thought and have the potential to cause demyelinating diseases, spinal cord, and nerve root injuries. Altered connectivity throughout various regions within the brain further exemplify the need for a better understanding of the disease and better treatment development. Higher instances of depression and dementia were also reported and coincide with not only a less active lifestyle, but altered brain activity. Studies on cardiac conduction and arrhythmias in AS patients revealed parasympathetic and sympathetic nervous system dysregulation. These studies have explored the possibility of new targets for treatment involving cardiac mechanisms. Treatments for diseases of a similar suspected pathology, new prospective targets for therapy, and a more thorough understanding of current treatments for the disease may be the key in providing more substantial relief. By further investigation in the role of the nervous system in Ankylosing Spondylitis, the disease may become more manageable for patients and greatly increase quality of life in the future.

ContributorsHill, Jordan (Author) / Newbern, Jason (Thesis director) / Anderson, Karen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading to the sequential phosphorylation of intracellular protein kinases in the

The ERK1/2 cell signaling pathway is highly conserved and a prominent regulator of processes like cell proliferation, differentiation, and survival. During nervous system development, the ERK1/2 cascade is activated by the binding of growth factors to receptor tyrosine kinases, leading to the sequential phosphorylation of intracellular protein kinases in the pathway and eventually ERK1 and ERK2, the effectors of the pathway. Well-defined germline mutations resulting in hyperactive ERK1/2 signaling have been implicated in a group of neurodevelopmental disorders called RASopathies. RASopathic individuals often display features such as developmental delay, intellectual disability, cardio-facial abnormalities, and motor deficits. In addition, loss-of-function in ERK1/2 can lead to neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability. To better understand the pathology of these neurodevelopmental disorders, the role of ERK1/2 must be examined during the development of specific neuronal and glial subtypes. In this study, we bred transgenic mice with conditional deletion of ERK1/2 in cholinergic neuronal populations to investigate whether ERK1/2 mediates the survival or activity of basal forebrain and striatal cholinergic neurons during postnatal development. By postnatal day 10, we found that ERK1/2 did not seem to mediate cholinergic neuron number within the basal forebrain or striatum. In addition, we showed that expression of FosB, a neuronal activity-dependent transcription factor and target of ERK1/2, was not yet observed in cholinergic neurons within either of these anatomical regions by P10. Finally, our preliminary data suggested that FosB expression within layer IV of the somatosensory cortex, a target domain for basal forebrain cholinergic projections, also did not appear to be mediated by ERK1/2 signaling. However, since cholinergic neuron development is not yet complete by P10, future work should explore whether ERK1/2 plays any role in the long-term survival and function of basal forebrain and striatal cholinergic neurons in adulthood. This will hopefully provide more insight into the pathology of neurodevelopmental disorders and inform future therapeutic strategies.

ContributorsBalasubramanian, Kavya (Author) / Newbern, Jason (Thesis director) / Velazquez, Ramon (Committee member) / Rees, Katherina (Committee member) / Barrett, The Honors College (Contributor) / Department of Psychology (Contributor)
Created2023-05
168457-Thumbnail Image.png
Description
Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of

Annually, approximately 1.7 million people suffer a traumatic brain injury (TBI) in the United States. After initial insult, a TBI persists as a series of molecular and cellular events that lead to cognitive and motor deficits which have no treatment. In addition, the injured brain activates the regenerative niches of the adult brain presumably to reduce damage. The subventricular zone (SVZ) niche contains neural progenitor cells (NPCs) that generate astrocytes, oligodendrocyte, and neuroblasts. Following TBI, the injury microenvironment secretes signaling molecules like stromal cell derived factor-1a (SDF-1a). SDF-1a gradients from the injury contribute to the redirection of neuroblasts from the SVZ towards the lesion which may differentiate into neurons and integrate into existing circuitry. This repair mechanism is transient and does not lead to complete recovery of damaged tissue. Further, the mechanism by which SDF-1a gradients reach SVZ cells is not fully understood. To prolong NPC recruitment to the injured brain, exogenous SDF-1a delivery strategies have been employed. Increases in cell recruitment following stroke, spinal cord injury, and TBI have been demonstrated following SDF-1a delivery. Exogenous delivery of SDF-1a is limited by its 28-minute half-life and clearance from the injury microenvironment. Biomaterials-based delivery improves stability of molecules like SDF-1a and offer control of its release. This dissertation investigates SDF-1a delivery strategies for neural regeneration in three ways: 1) elucidating the mechanisms of spatiotemporal SDF-1a signaling across the brain, 2) developing a tunable biomaterials system for SDF-1a delivery to the brain, 3) investigating SDF-1a delivery on SVZ-derived cell migration following TBI. Using in vitro, in vivo, and in silico analyses, autocrine/paracrine signaling was necessary to produce SDF-1a gradients in the brain. Native cell types engaged in autocrine/paracrine signaling. A microfluidics device generated injectable hyaluronic-based microgels that released SDF-1a peptide via enzymatic cleavage. Microgels (±SDF-1a peptide) were injected 7 days post-TBI in a mouse model and evaluated for NPC migration 7 days later using immunohistochemistry. Initial staining suggested complex presence of astrocytes, NPCs, and neuroblasts throughout the frontoparietal cortex. Advancement of chemokine delivery was demonstrated by uncovering endogenous chemokine propagation in the brain, generating new approaches to maximize chemokine-based neural regeneration.
ContributorsHickey, Kassondra (Author) / Stabenfeldt, Sarah E (Thesis advisor) / Holloway, Julianne (Committee member) / Caplan, Michael (Committee member) / Brafman, David (Committee member) / Newbern, Jason (Committee member) / Arizona State University (Publisher)
Created2021
189241-Thumbnail Image.png
Description
The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed that ALS and FTD reside along a spectrum with clinical

The GGGGCC (G4C2) hexanucleotide repeat expansion (HRE) in the C9orf72 gene is the most common genetic abnormality associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two devastatingly progressive neurodegenerative diseases. The discovery of this genetic link confirmed that ALS and FTD reside along a spectrum with clinical and pathological commonalities. Historically understood as diseases resulting in neuronal death, the role of non-neuronal cells like astrocytes is still wholly unresolved. With evidence of cortical neurodegeneration leading to cognitive impairments in C9orf72-ALS/FTD, there is a need to investigate the role of cortical astrocytes in this disease spectrum. Here, a patient-derived induced pluripotent stem cell (iPSC) cortical astrocyte model was developed to investigate consequences of C9orf72-HRE pathogenic features in this cell type. Although there were no significant C9orf72-HRE pathogenic features in cortical astrocytes, transcriptomic, proteomic and phosphoproteomic profiles elucidated global disease-related phenotypes. Specifically, aberrant expression of astrocytic-synapse proteins and secreted factors were identified. SPARCL1, a pro-synaptogenic secreted astrocyte factor was found to be selectively decreased in C9orf72-ALS/FTD iPSC-cortical astrocytes. This finding was further validated in human tissue analyses, indicating that cortical astrocytes in C9orf72-ALS/FTD exhibit a reactive transformation that is characterized by a decrease in SPARCL1 expression. Considering the evidence for substantial astrogliosis and synaptic failure leading to cognitive impairments in C9orf72-ALS/FTD, these findings represent a novel understanding of how cortical astrocytes may contribute to the cortical neurodegeneration in this disease spectrum.
ContributorsBustos, Lynette (Author) / Sattler, Rita (Thesis advisor) / Newbern, Jason (Committee member) / Zarnescu, Daniela (Committee member) / Brafman, David (Committee member) / Mehta, Shwetal (Committee member) / Arizona State University (Publisher)
Created2023
156920-Thumbnail Image.png
Description
Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors

Serotonin 1B receptors (5-HT1BRs) are a novel target for developing pharmacological therapies to reduce psychostimulant craving. 5-HT1BRs are expressed in the mesolimbic pathway projecting from the ventral tegmental area (VTA) to the nucleus accumbens (NAc), which is involved in reward and motivation. 5-HT1BR agonists modulate both cocaine- and methamphetamine-seeking behaviors in rat models of psychostimulant craving. In this dissertation, I tested the central hypothesis that 5-HT1BRs regulate cocaine and methamphetamine stimulant and rewarding effects in mice. I injected mice daily with cocaine for 20 days and then tested them 20 days after their last injection. The results showed that the 5-HT1BR agonist CP94253 attenuated sensitization of cocaine-induced locomotion and cocaine-seeking behavior, measured as a decrease in the ability of a cocaine priming injection to reinstate extinguished cocaine-conditioned place preference (CPP). Subsequent experiments showed that CP94253 given prior to conditioning sessions had no effect on acquisition of methamphetamine-CPP, a measure of drug reward; however, CP94253 given prior to testing attenuated expression of methamphetamine-CPP, a measure of drug seeking. To examine brain regions and cell types involved in CP94253 attenuation of methamphetamine-seeking, I examined changes in the immediate early gene product, Fos, which is a marker of brain activity involving gene transcription changes. Mice expressing methamphetamine-CPP showed elevated Fos expression in the VTA and basolateral amygdala (BlA), and reduced Fos in the central nucleus of the amygdala (CeA). In mice showing CP94253-induced attenuation of methamphetamine-CPP expression, Fos was increased in the VTA, NAc shell and core, and the dorsal medial caudate-putamen. CP94253 also reversed the methamphetamine-conditioned decrease in Fos expression in the CeA and the increase in the BlA. In drug-naïve, non-conditioned control mice, CP94253 only increased Fos in the CeA, suggesting that the increases observed in methamphetamine-conditioned mice were due to conditioning rather than an unconditioned effect of CP94253 on Fos expression. In conclusion, 5-HT1BR stimulation attenuates both cocaine and methamphetamine seeking in mice, and that the latter effect may involve normalizing activity in the amygdala and increasing activity in the mesolimbic pathway. These findings further support the potential efficacy of 5-HT1BR agonists as pharmacological interventions for psychostimulant craving in humans.
ContributorsDer-Ghazarian, Taleen (Author) / Neisewander, Janet (Thesis advisor) / Olive, Foster (Committee member) / Newbern, Jason (Committee member) / Wu, Jie (Committee member) / Arizona State University (Publisher)
Created2018
161234-Thumbnail Image.png
Description
LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to benign and malignant tumors. Past studies have focused on defining

LKB1/STK11 is a serine/threonine kinase first identified in C.elegans as a gene important for cell polarity and proliferation. Mutations in LKB1 are the primary cause of Peutz-Jegher’s cancer syndrome, an autosomal dominantly inherited disease, in which patients are predisposed to benign and malignant tumors. Past studies have focused on defining LKB1 functions in various tissue types, for example LKB1 regulates axonal polarization and dendritic arborization by activating downstream substrates in excitatory neurons of the developing neocortex. However, the implications of LKB1, specifically in the developing cortical inhibitory GABAergic interneurons is unknown. LKB1 deletion was achieved by using Cre-lox technology to induce LKB1 loss in cells localized in the medial ganglionic eminence (MGE) that express Nkx2.1 and generate cortical GABAergic neurons. In this research study it is suggested that LKB1 plays a role in GABAergic interneuron specification by specifically regulating the expression of parvalbumin during the development of fast-spiking interneurons. Preliminary evidence suggest LKB1 also modulates the number of Nkx2.1-derived oligodendrocytes in the cortex. By utilizing a GABAergic neuron specific LKB1 deletion mutant, we confirmed that the loss of parvalbumin expression was due to a GABAergic neuron autonomous function for LKB1. These data provide new insight into the cell specific functions of LKB1 in the developing brain.
ContributorsSebastian, Rebecca (Author) / Newbern, Jason (Thesis advisor) / Neisewander, Janet (Committee member) / Gipson-Reichardt, Cassandra (Committee member) / Arizona State University (Publisher)
Created2019
189406-Thumbnail Image.png
Description
The process of brain development is magnificently complex, requiring the coordination of millions of cells and thousands of genes across space and time. It is therefore unsurprising that brain development is frequently disrupted. Numerous genetic mutations underlying altered neurodevelopment have been identified and aligned with behavioral changes. However, the cellular

The process of brain development is magnificently complex, requiring the coordination of millions of cells and thousands of genes across space and time. It is therefore unsurprising that brain development is frequently disrupted. Numerous genetic mutations underlying altered neurodevelopment have been identified and aligned with behavioral changes. However, the cellular mechanisms linking genetics with behavior are incompletely understood. The goal of my research is to understand how intracellular kinase signaling contributes to the development of ventrally derived glia and neurons. Of particular interest are GABAergic interneurons in the cerebral cortex, as GABAergic disruption is observed in multiple neurodevelopmental disorders including epilepsy, schizophrenia, and autism spectrum disorders. In addition, I investigated how kinase signaling influences the number and distribution of ventral born oligodendrocyte lineage cells to gain insight into white matter abnormalities observed in developmental disorders. This work primarily investigates the mitogen associated protein kinase (MAPK) signaling cascade, which is ubiquitously expressed but is particularly important for brain development. Hyperactive MAPK signaling causes RASopathies, a group of neurodevelopmental disorders where affected individuals often exhibit learning disability. MAPK haploinsufficiency, such as in 16p11.2 deletion syndrome, also results in intellectual disability. In both cases, the cells driving cognitive dysfunction are unknown. Using genetically modified mouse models, I found that hyperactivation of MAPK signaling disrupts a subtype of GABAergic neurons that express parvalbumin, though the same cells are resilient to MAPK deletion. In contrast, somatostatin expressing neurons require MAPK for normal development but are less responsive to hyperactivation. Oligodendrocyte lineage cells have a bidirectional response to MAPK signaling, where hyperactivating MAPK increases cell number and deletion reduces glial number. MAPK signaling activates several hundred downstream cues, but one of particular interest to this work is called Liver Kinase B1 (LKB1). LKB1 is a protein kinase which can regulate cell proliferation, survival, and metabolism. Here, I discovered that LKB1 is necessary for the development of parvalbumin expressing neurons. Collectively, these data identify disruption to certain ventral derivatives as a candidate pathogenic mechanism in neurodevelopmental conditions.
ContributorsKnowles, Sara Jane (Author) / Newbern, Jason (Thesis advisor) / Sattler, Rita (Committee member) / Balmer, Timothy (Committee member) / Velazquez, Ramon (Committee member) / Arizona State University (Publisher)
Created2023
Description

Okur-Chung Neurodevelopmental syndrome (OCNDS) is a rare disorder characterized by hypotonia, developmental delay, dysmorphic features, and more. It is caused by pathogenic variants on CSNK2A1, the α subunit of protein kinase CK2. CK2 is considered a master regulator involved in many cell functions from cell differentiation and proliferation to apoptosis.

Okur-Chung Neurodevelopmental syndrome (OCNDS) is a rare disorder characterized by hypotonia, developmental delay, dysmorphic features, and more. It is caused by pathogenic variants on CSNK2A1, the α subunit of protein kinase CK2. CK2 is considered a master regulator involved in many cell functions from cell differentiation and proliferation to apoptosis. Here, we create a potential zebrafish model of OCNDS with CK2 inhibition and characterize fibroblast cells with, K198R, D156E, and R47G variants of CSNK2A1. RNAseq results display a wide range of effects notably in the Myosin Protein superfamily, Insulin-like Growth Factor family, and in proteins related to mitochondrial function and cell metabolism. Factors in cell growth and metabolism across the nervous system and neuromuscular interactions appear to be most affected with similarities in markers to oncogenic states in some cases.

ContributorsLeka, Kamawela (Author) / Newbern, Jason (Thesis director) / Rangasamy, Sampath (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05