Matching Items (21)

130263-Thumbnail Image.png

Advances in Thermionic Energy Conversion Through Single-Crystal n-Type Diamond

Description

Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the

Thermionic energy conversion, a process that allows direct transformation of thermal to electrical energy, presents a means of efficient electrical power generation as the hot and cold side of the corresponding heat engine are separated by a vacuum gap. Conversion efficiencies approaching those of the Carnot cycle are possible if material parameters of the active elements at the converter, i.e., electron emitter or cathode and collector or anode, are optimized for operation in the desired temperature range.

These parameters can be defined through the law of Richardson–Dushman that quantifies the ability of a material to release an electron current at a certain temperature as a function of the emission barrier or work function and the emission or Richardson constant. Engineering materials to defined parameter values presents the key challenge in constructing practical thermionic converters. The elevated temperature regime of operation presents a constraint that eliminates most semiconductors and identifies diamond, a wide band-gap semiconductor, as a suitable thermionic material through its unique material properties. For its surface, a configuration can be established, the negative electron affinity, that shifts the vacuum level below the conduction band minimum eliminating the surface barrier for electron emission.

In addition, its ability to accept impurities as donor states allows materials engineering to control the work function and the emission constant. Single-crystal diamond electrodes with nitrogen levels at 1.7 eV and phosphorus levels at 0.6 eV were prepared by plasma-enhanced chemical vapor deposition where the work function was controlled from 2.88 to 0.67 eV, one of the lowest thermionic work functions reported. This work function range was achieved through control of the doping concentration where a relation to the amount of band bending emerged. Upward band bending that contributed to the work function was attributed to surface states where lower doped homoepitaxial films exhibited a surface state density of ∼3 × 10[superscript 11] cm[superscript −2]. With these optimized doped diamond electrodes, highly efficient thermionic converters are feasible with a Schottky barrier at the diamond collector contact mitigated through operation at elevated temperatures.

Contributors

Agent

Created

Date Created
  • 2017-12-06

134642-Thumbnail Image.png

Trevor Van Engelhoven

Description

This project details the learning of processes in nanofabrication and sensor detection fields. We sought to apply this knowledge to develop a processing procedure to fabricate sensors used to detect

This project details the learning of processes in nanofabrication and sensor detection fields. We sought to apply this knowledge to develop a processing procedure to fabricate sensors used to detect high energy protons.  We seek to create such a sensor to be applied to aid Mayo Clinic’s Proton Beam Therapy center for cancer treatment through providing beam detection measurements. Developed plans would allow for proton beam detectors to be able to measure beam intensity and direction which would allow for more accurate beam treatments. Current detectors require much calibration and solid state detectors can’t withstand the high-energy exposure of the proton beam for long durations. By fabricating pixelated diamond sensors we expect to produce sensitive beam readings, while extending detector length time due to diamonds durable crystalline lattice. We report processing procedures for simple 2-3 contact detectors as well as more complex multi-contact pixelated sensors used for spatial resolution of the beam. Testing of simple sensors is additionally reported with successful radioactive source detection.

Contributors

Agent

Created

Date Created
  • 2016-12

131279-Thumbnail Image.png

Analysis of TiC at the diamond-titanium interface for diamond-based diode detectors via annealing and XPS

Description

In this project we are analyzing the diamond-titanium interface as it applies to diamond-based diode devices, including alpha particle, proton, and neutron detectors. This is done through the fabrication of

In this project we are analyzing the diamond-titanium interface as it applies to diamond-based diode devices, including alpha particle, proton, and neutron detectors. This is done through the fabrication of an O-terminated B-doped diamond sample with a 20 Å Ti / 10 Å Pt overlayer which was then annealed and examined via X-ray photoelectron spectroscopy (XPS). It was discovered that after annealing the sample at temperatures ranging from 400 C - 900 C that TiC was not formed at any point during this experiment. Possible reasons for this include a lack of sufficient titanium in order to form TiC and over oxygenating the diamond surface before the metal was deposited.

Contributors

Agent

Created

Date Created
  • 2020-05

Plasma enhanced atomic layer deposition of oxides on graphene

Description

Integration of dielectrics with graphene is essential to the fulfillment of graphene based electronic applications. While many dielectric deposition techniques exist, plasma enhanced atomic layer deposition (PEALD) is emerging as

Integration of dielectrics with graphene is essential to the fulfillment of graphene based electronic applications. While many dielectric deposition techniques exist, plasma enhanced atomic layer deposition (PEALD) is emerging as a technique to deposit ultrathin dielectric films with superior densities and interfaces. However, the degree to which PEALD on graphene can be achieved without plasma-induced graphene deterioration is not well understood. In this work, we investigate a range of plasma conditions across a single sample, characterizing both oxide growth and graphene deterioration using spectroscopic analysis and atomic force microscopy. Investigation of graphene and film quality produced by these conditions yields insight into plasma effects. Using a specially designed sample configuration, we achieve ultrathin (< 1 nm) aluminum oxide films atop graphene.

Contributors

Agent

Created

Date Created
  • 2016-05

130408-Thumbnail Image.png

Polarization Effects of GaN and AlGaN: Polarization Bound Charge, Band Bending, and Electronic Surface States

Description

GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration.

GaN-based devices are currently limited by reliability issues such as gate leakage and current collapse, where the mechanisms responsible for degradation are closely related to the electronic surface state configuration. Therefore, understanding the electronic surface state configuration of GaN-based materials will help improve device performance. Since GaN has an inherent polarization, these materials are also subject to a bound polarization charge, which influences the electronic state configuration. In this study, the surface band bending of N-face GaN, Ga-face GaN, and Ga-face AlGaN was measured with x-ray photoemission spectroscopy after various cleaning steps to investigate the effects of the polarization. Despite the different surface bound charge on these materials, similar band bending was observed regardless of the magnitude or direction of the charge. Specifically, the band bending varied from −0.1 eV to 0.9 eV on these samples, which supported the models of a Fermi level pinning state at ∼0.4 eV to 0.8 eV below the conduction band. Based on available literature, we suggest this pinning state is indirectly evident of a nitrogen vacancy or gallium-dangling bond.

Contributors

Created

Date Created
  • 2014-12-01

Thermally enhanced photoinduced electron emission from nitrogen-doped diamond films on silicon substrates

Description

This work presents a spectroscopic study of the thermally enhanced photoinduced electron emission from nitrogen-doped diamond films prepared on p-type silicon substrates. It has been shown that photon-enhanced thermionic emission

This work presents a spectroscopic study of the thermally enhanced photoinduced electron emission from nitrogen-doped diamond films prepared on p-type silicon substrates. It has been shown that photon-enhanced thermionic emission (PETE) can substantially enhance thermionic emission intensity from a p-type semiconductor. An n-type diamond/p-type silicon structure was illuminated with 400–450 nm light, and the spectra of the emitted electrons showed a work function less than 2 eV and nearly an order of magnitude increase in emission intensity as the temperature was increased from ambient to ∼400 °C. Thermionic emission was negligible in this temperature range. The results are modeled in terms of contributions from PETE and direct photoelectron emission, and the large increase is consistent with a PETE component. The results indicate possible application in combined solar/thermal energy conversion devices.

Contributors

Agent

Created

Date Created
  • 2014-09-15

130423-Thumbnail Image.png

Surface band bending and band alignment of plasma enhanced atomic layer deposited dielectrics on Ga- and N-face gallium nitride

Description

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process

The effects of surface pretreatment, dielectric growth, and post deposition annealing on interface electronic structure and polarization charge compensation of Ga- and N-face bulk GaN were investigated. The cleaning process consisted of an ex-situ wet chemical NH[subscript 4]OH treatment and an in-situ elevated temperature NH[subscript 3] plasma process to remove carbon contamination, reduce oxygen coverage, and potentially passivate N-vacancy related defects. After the cleaning process, carbon contamination decreased below the x-ray photoemission spectroscopy detection limit, and the oxygen coverage stabilized at ∼1 monolayer on both Ga- and N-face GaN. In addition, Ga- and N-face GaN had an upward band bending of 0.8 ± 0.1 eV and 0.6 ± 0.1 eV, respectively, which suggested the net charge of the surface states and polarization bound charge was similar on Ga- and N-face GaN. Furthermore, three dielectrics (HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2]) were prepared by plasma-enhanced atomic layer deposition on Ga- or N-face GaN and annealed in N[subscript 2] ambient to investigate the effect of the polarization charge on the interface electronic structure and band offsets. The respective valence band offsets of HfO[subscript 2], Al[subscript 2]O[subscript 3], and SiO[subscript 2] with respect to Ga- and N-face GaN were 1.4 ± 0.1, 2.0 ± 0.1, and 3.2 ± 0.1 eV, regardless of dielectric thickness. The corresponding conduction band offsets were 1.0 ± 0.1, 1.3 ± 0.1, and 2.3 ± 0.1 eV, respectively. Experimental band offset results were consistent with theoretical calculations based on the charge neutrality level model. The trend of band offsets for dielectric/GaN interfaces was related to the band gap and/or the electronic part of the dielectric constant. The effect of polarization charge on band offset was apparently screened by the dielectric-GaN interface states.

Contributors

Created

Date Created
  • 2014-09-28

130266-Thumbnail Image.png

Temperature dependent simulation of diamond depleted Schottky PIN diodes

Description

Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The

Diamond is considered as an ideal material for high field and high power devices due to its high breakdown field, high lightly doped carrier mobility, and high thermal conductivity. The modeling and simulation of diamond devices are therefore important to predict the performances of diamond based devices. In this context, we use Silvaco[superscript ®] Atlas, a drift-diffusion based commercial software, to model diamond based power devices. The models used in Atlas were modified to account for both variable range and nearest neighbor hopping transport in the impurity bands associated with high activation energies for boron doped and phosphorus doped diamond. The models were fit to experimentally reported resistivity data over a wide range of doping concentrations and temperatures. We compare to recent data on depleted diamond Schottky PIN diodes demonstrating low turn-on voltages and high reverse breakdown voltages, which could be useful for high power rectifying applications due to the low turn-on voltage enabling high forward current densities. Three dimensional simulations of the depleted Schottky PIN diamond devices were performed and the results are verified with experimental data at different operating temperatures.

Contributors

Created

Date Created
  • 2016-06-08

151415-Thumbnail Image.png

Plasma surface interactions at interlayer dielectric (ILD) and metal surfaces

Description

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the

In this dissertation, remote plasma interactions with the surfaces of low-k interlayer dielectric (ILD), Cu and Cu adhesion layers are investigated. The first part of the study focuses on the simultaneous plasma treatment of ILD and chemical mechanical polishing (CMP) Cu surfaces using N2/H2 plasma processes. H atoms and radicals in the plasma react with the carbon groups leading to carbon removal for the ILD films. Results indicate that an N2 plasma forms an amide-like layer on the surface which apparently leads to reduced carbon abstraction from an H2 plasma process. In addition, FTIR spectra indicate the formation of hydroxyl (Si-OH) groups following the plasma exposure. Increased temperature (380 °C) processing leads to a reduction of the hydroxyl group formation compared to ambient temperature processes, resulting in reduced changes of the dielectric constant. For CMP Cu surfaces, the carbonate contamination was removed by an H2 plasma process at elevated temperature while the C-C and C-H contamination was removed by an N2 plasma process at elevated temperature. The second part of this study examined oxide stability and cleaning of Ru surfaces as well as consequent Cu film thermal stability with the Ru layers. The ~2 monolayer native Ru oxide was reduced after H-plasma processing. The thermal stability or islanding of the Cu film on the Ru substrate was characterized by in-situ XPS. After plasma cleaning of the Ru adhesion layer, the deposited Cu exhibited full coverage. In contrast, for Cu deposition on the Ru native oxide substrate, Cu islanding was detected and was described in terms of grain boundary grooving and surface and interface energies. The thermal stability of 7 nm Ti, Pt and Ru ii interfacial adhesion layers between a Cu film (10 nm) and a Ta barrier layer (4 nm) have been investigated in the third part. The barrier properties and interfacial stability have been evaluated by Rutherford backscattering spectrometry (RBS). Atomic force microscopy (AFM) was used to measure the surfaces before and after annealing, and all the surfaces are relatively smooth excluding islanding or de-wetting phenomena as a cause of the instability. The RBS showed no discernible diffusion across the adhesion layer/Ta and Ta/Si interfaces which provides a stable underlying layer. For a Ti interfacial layer RBS indicates that during 400 °C annealing Ti interdiffuses through the Cu film and accumulates at the surface. For the Pt/Cu system Pt interdiffuion is detected which is less evident than Ti. Among the three adhesion layer candidates, Ru shows negligible diffusion into the Cu film indicating thermal stability at 400 °C.

Contributors

Agent

Created

Date Created
  • 2012

151155-Thumbnail Image.png

Electronic states of high-k oxides in gate stack structures

Description

In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack

In this dissertation, in-situ X-ray and ultraviolet photoemission spectroscopy have been employed to study the interface chemistry and electronic structure of potential high-k gate stack materials. In these gate stack materials, HfO2 and La2O3 are selected as high-k dielectrics, VO2 and ZnO serve as potential channel layer materials. The gate stack structures have been prepared using a reactive electron beam system and a plasma enhanced atomic layer deposition system. Three interrelated issues represent the central themes of the research: 1) the interface band alignment, 2) candidate high-k materials, and 3) band bending, internal electric fields, and charge transfer. 1) The most highlighted issue is the band alignment of specific high-k structures. Band alignment relationships were deduced by analysis of XPS and UPS spectra for three different structures: a) HfO2/VO2/SiO2/Si, b) HfO2-La2O3/ZnO/SiO2/Si, and c) HfO2/VO2/ HfO2/SiO2/Si. The valence band offset of HfO2/VO2, ZnO/SiO2 and HfO2/SiO2 are determined to be 3.4 ± 0.1, 1.5 ± 0.1, and 0.7 ± 0.1 eV. The valence band offset between HfO2-La2O3 and ZnO was almost negligible. Two band alignment models, the electron affinity model and the charge neutrality level model, are discussed. The results show the charge neutrality model is preferred to describe these structures. 2) High-k candidate materials were studied through comparison of pure Hf oxide, pure La oxide, and alloyed Hf-La oxide films. An issue with the application of pure HfO2 is crystallization which may increase the leakage current in gate stack structures. An issue with the application of pure La2O3 is the presence of carbon contamination in the film. Our study shows that the alloyed Hf-La oxide films exhibit an amorphous structure along with reduced carbon contamination. 3) Band bending and internal electric fields in the gate stack structure were observed by XPS and UPS and indicate the charge transfer during the growth and process. The oxygen plasma may induce excess oxygen species with negative charges, which could be removed by He plasma treatment. The final HfO2 capping layer deposition may reduce the internal potential inside the structures. The band structure was approaching to a flat band condition.

Contributors

Agent

Created

Date Created
  • 2012