Matching Items (12)

137359-Thumbnail Image.png

Microglia Motility in the Context of a PDGF Induced Glioblastoma

Description

Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma.

Tumor associated microglia-and-macrophages (TAMS) may constitute up to 30% of the composition of glioblastoma. Through mechanisms not well understood, TAMS are thought to aid the progression and invasiveness of glioblastoma. In an effort to investigate properties of TAMS in the context of glioblastoma, I utilized data from a PDGF-driven rat model of glioma that highly resembles human glioblastoma. Data was collected from time-lapse microscopy of slice cultures that differentially labels glioma cells and also microglia cells within and outside the tumor microenvironment. Here I show that microglia localize in the tumor and move with greater speed and migration than microglia outside the tumor environment. Following previous studies that show microglia can be characterized by certain movement distributions based on environmental influences, in this study, the majority of microglia movement was characterized by a power law distribution with a characteristic power law exponent lower than outside the tumor region. This indicates that microglia travel at greater distances within the tumor region than outside of it.

Contributors

Agent

Created

Date Created
  • 2013-12

128883-Thumbnail Image.png

Evolution of Proliferation and the Angiogenic Switch in Tumors with High Clonal Diversity

Description

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can “run away” and generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This observation dovetails with results showing that clonal diversity in Barrett's esophagus predicts progression to malignancy.

Contributors

Agent

Created

Date Created
  • 2014-04-14

129446-Thumbnail Image.png

Three level signal transduction cascades lead to reliably timed switches

Description

Signaling cascades proliferate signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling

Signaling cascades proliferate signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis–Menten type equations are derived for open enzymatic systems. Cascading these equations we demonstrate that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting the evolutionary benefit of the observed cascades.

Contributors

Agent

Created

Date Created
  • 2014-11-21

129482-Thumbnail Image.png

Modeling the population dynamics of lemon sharks

Description

Background
Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds) are inherently vulnerable to anthropogenic mortality. Although some mathematical models have been applied successfully to manage these animals, more detailed

Background
Long-lived marine megavertebrates (e.g. sharks, turtles, mammals, and seabirds) are inherently vulnerable to anthropogenic mortality. Although some mathematical models have been applied successfully to manage these animals, more detailed treatments are often needed to assess potential drivers of population dynamics. In particular, factors such as age-structure, density-dependent feedbacks on reproduction, and demographic stochasticity are important for understanding population trends, but are often difficult to assess. Lemon sharks (Negaprion brevirostris) have a pelagic adult phase that makes them logistically difficult to study. However, juveniles use coastal nursery areas where their densities can be high.
Results
We use a stage-structured, Markov-chain stochastic model to describe lemon shark population dynamics from a 17-year longitudinal dataset at a coastal nursery area at Bimini, Bahamas. We found that the interaction between delayed breeding, density-dependence, and demographic stochasticity accounts for 33 to 49% of the variance in population size.
Conclusions
Demographic stochasticity contributed all random effects in this model, suggesting that the existence of unmodeled environmental factors may be driving the majority of interannual population fluctuations. In addition, we are able to use our model to estimate the natural mortality rate of older age classes of lemon sharks that are difficult to study. Further, we use our model to examine what effect the length of a time series plays on deciphering ecological patterns. We find that—even with a relatively long time series—our sampling still misses important rare events. Our approach can be used more broadly to infer population dynamics of other large vertebrates in which age structure and demographic stochasticity are important.

Contributors

Agent

Created

Date Created
  • 2014-11-18

152362-Thumbnail Image.png

Time-dependent models of signal transduction networks

Description

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling

Signaling cascades transduce signals received on the cell membrane to the nucleus. While noise filtering, ultra-sensitive switches, and signal amplification have all been shown to be features of such signaling cascades, it is not understood why cascades typically show three or four layers. Using singular perturbation theory, Michaelis-Menten type equations are derived for open enzymatic systems. When these equations are organized into a cascade, it is demonstrated that the output signal as a function of time becomes sigmoidal with the addition of more layers. Furthermore, it is shown that the activation time will speed up to a point, after which more layers become superfluous. It is shown that three layers create a reliable sigmoidal response progress curve from a wide variety of time-dependent signaling inputs arriving at the cell membrane, suggesting that natural selection may have favored signaling cascades as a parsimonious solution to the problem of generating switch-like behavior in a noisy environment.

Contributors

Agent

Created

Date Created
  • 2013

155172-Thumbnail Image.png

Dynamics and implications of data-based disease models in public health and agriculture

Description

The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental

The increased number of novel pathogens that potentially threaten the human population has motivated the development of mathematical and computational modeling approaches for forecasting epidemic impact and understanding key environmental characteristics that influence the spread of diseases. Yet, in the case that substantial uncertainty surrounds the transmission process during a rapidly developing infectious disease outbreak, complex mechanistic models may be too difficult to be calibrated quick enough for policy makers to make informed decisions. Simple phenomenological models that rely on a small number of parameters can provide an initial platform for assessing the epidemic trajectory, estimating the reproduction number and quantifying the disease burden from the early epidemic phase.

Chapter 1 provides background information and motivation for infectious disease forecasting and outlines the rest of the thesis.

In chapter 2, logistic patch models are used to assess and forecast the 2013-2015 West Africa Zaire ebolavirus epidemic. In particular, this chapter is concerned with comparing and contrasting the effects that spatial heterogeneity has on the forecasting performance of the cumulative infected case counts reported during the epidemic.

In chapter 3, two simple phenomenological models inspired from population biology are used to assess the Research and Policy for Infectious Disease Dynamics (RAPIDD) Ebola Challenge; a simulated epidemic that generated 4 infectious disease scenarios. Because of the nature of the synthetically generated data, model predictions are compared to exact epidemiological quantities used in the simulation.

In chapter 4, these models are applied to the 1904 Plague epidemic that occurred in Bombay. This chapter provides evidence that these simple models may be applicable to infectious diseases no matter the disease transmission mechanism.

Chapter 5, uses the patch models from chapter 2 to explore how migration in the 1904 Plague epidemic changes the final epidemic size.

The final chapter is an interdisciplinary project concerning within-host dynamics of cereal yellow dwarf virus-RPV, a plant pathogen from a virus group that infects over 150 grass species. Motivated by environmental nutrient enrichment due to anthropological activities, mathematical models are employed to investigate the relevance of resource competition to pathogen and host dynamics.

Contributors

Agent

Created

Date Created
  • 2016

153262-Thumbnail Image.png

Cell quota based population models and their applications

Description

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota in particular lends itself to ecological stoichiometry, which is a powerful framework for mathematical ecology. Three models are developed based on the cell quota principal in order to demonstrate its applications beyond chemostat culture.

First, a data-driven model is derived for neutral lipid synthesis in green microalgae with respect to nitrogen limitation. This model synthesizes several established frameworks in phycology and ecological stoichiometry. The model demonstrates how the cell quota is a useful abstraction for understanding the metabolic shift to neutral lipid production that is observed in certain oleaginous species.

Next a producer-grazer model is developed based on the cell quota model and nutrient recycling. The model incorporates a novel feedback loop to account for animal toxicity due to accumulation of nitrogen waste. The model exhibits rich, complex dynamics which leave several open mathematical questions.

Lastly, disease dynamics in vivo are in many ways analogous to those of an ecosystem, giving natural extensions of the cell quota concept to disease modeling. Prostate cancer can be modeled within this framework, with androgen the limiting nutrient and the prostate and cancer cells as competing species. Here the cell quota model provides a useful abstraction for the dependence of cellular proliferation and apoptosis on androgen and the androgen receptor. Androgen ablation therapy is often used for patients in biochemical recurrence or late-stage disease progression and is in general initially effective. However, for many patients the cancer eventually develops resistance months to years after treatment begins. Understanding how and predicting when hormone therapy facilitates evolution of resistant phenotypes has immediate implications for treatment. Cell quota models for prostate cancer can be useful tools for this purpose and motivate applications to other diseases.

Contributors

Agent

Created

Date Created
  • 2014

155984-Thumbnail Image.png

Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent Androgen Suppression Therapy

Description

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals to give estimate forecasts using data assimilation via an ensemble Kalman Filter. Using the ensemble Kalman Filter, I perform dual estimation of parameters and state variables to test the prediction accuracy of the models. Finally, I present a novel model with time delay and a delay-dependent parameter. I provide a geometric stability result to study the behavior of this model and show that the inclusion of time delay may improve the accuracy of predictions. Also, I demonstrate with clinical data that the inclusion of the delay-dependent parameter facilitates the identification and estimation of parameters.

Contributors

Agent

Created

Date Created
  • 2017

154707-Thumbnail Image.png

Oncolytic viral and immunotherapy models combined with strategies to ameliorate cancer burden

Description

Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells.

Combination therapy has shown to improve success for cancer treatment. Oncolytic virotherapy is cancer treatment that uses engineered viruses to specifically infect and kill cancer cells, without harming healthy cells. Immunotherapy boosts the body's natural defenses towards cancer. The combination of oncolytic virotherapy and immunotherapy is explored through deterministic systems of nonlinear differential equations, constructed to match experimental data for murine melanoma. Mathematical analysis was done in order to gain insight on the relationship between cancer, viruses and immune response. One extension of the model focuses on clinical needs, with the underlying goal to seek optimal treatment regimens; for both frequency and dose quantity. The models in this work were first used to estimate parameters from preclinical experimental data, to identify biologically realistic parameter values. Insight gained from the mathematical analysis in the first model, allowed for numerical analysis to explore optimal treatment regimens of combination oncolytic virotherapy and dendritic vaccinations. Permutations accounting for treatment scheduled were done to find regimens that reduce tumor size. Observations from the produced data lead to in silico exploration of immune-viral interactions. Results suggest under optimal settings, combination treatment works better than monotherapy of either type. The most optimal result suggests treatment over a longer period of time, with fractioned doses, while reducing the total dendritic vaccination quantity, and maintaining the maximum virotherapy used in the experimental work.

Contributors

Agent

Created

Date Created
  • 2016

150973-Thumbnail Image.png

Niche construction, sustainability and evolutionary ecology of cancer

Description

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling to explore different variations on the consumer-resource type systems, identifying some possible transitional regimes that can precede the tragedy of the commons. I then reformulate it as a game of a multi-player prisoner's dilemma and study two possible approaches for preventing it, namely direct modification of players' payoffs through punishment/reward and modification of the environment in which the interactions occur. I also investigate the questions of whether the strategy of resource allocation for reproduction or competition would yield higher fitness in an evolving consumer-resource type system and demonstrate that the direction in which the system will evolve will depend not only on the state of the environment but largely on the initial composition of the population. I then apply the developed framework to modeling cancer as an evolving ecological system and draw conclusions about some alternative approaches to cancer treatment.

Contributors

Agent

Created

Date Created
  • 2012