Matching Items (12)
Filtering by

Clear all filters

156927-Thumbnail Image.png
Description
This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass

This paper describes an effort to bring wing structural stiffness and aeroelastic considerations early in the conceptual design process with an automated tool. Stiffness and aeroelasticity can be well represented with a stochastic model during conceptual design because of the high level of uncertainty and variability in wing non-structural mass such as fuel loading and control surfaces. To accomplish this, an improvement is made to existing design tools utilizing rule based automated design to generate wing torque box geometry from a specific wing outer mold-line. Simple analysis on deflection and inferred stiffness shows how early conceptual design choices can strongly impact the stiffness of the structure. The impacts of design choices and how the buckling constraints drive structural weight in particular examples are discussed. The model is then carried further to include a finite element model (FEM) to analyze resulting mode shapes and frequencies for use in aeroelastic analysis. The natural frequencies of several selected wing torque boxes across a range of loading cases are compared.
ContributorsMiskin, Daniel L (Author) / Takahashi, Timothy T (Thesis advisor) / Mignolet, Marc (Committee member) / Murthy, Raghavendra (Committee member) / Arizona State University (Publisher)
Created2018
134492-Thumbnail Image.png
Description
Cravingz is a web-based application that allows users to learn the maximum number of food items that they can purchase at a restaurant within a defined personal budget. We created two versions of this web-based application and asked 40 users to perform an A/B test to determine which version provides

Cravingz is a web-based application that allows users to learn the maximum number of food items that they can purchase at a restaurant within a defined personal budget. We created two versions of this web-based application and asked 40 users to perform an A/B test to determine which version provides the best user experience in terms of efficiency and performance. Users who participated in this study completed a set of tasks to test these applications. Our findings demonstrate that users prefer a web application that does not require them to input data repeatedly to view combinations for multiple restaurants. Although the version which required reentry of data was more visually-pleasing, users preferred the version in which inputting data was a one-time task.
ContributorsPandarinath, Agastya (Co-author) / Jain, Ayushi (Co-author) / Atkinson, Robert (Thesis director) / Chavez-Echeagaray, Maria Elena (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
133215-Thumbnail Image.png
Description
Mistuning is defined as the blade-to-blade variation of bladed disks caused by slight changes in material or geometric properties; mistuned blades can cause significant increases in vibrational response. The primary goal of this thesis is to describe the relationship between coupling index and amplification factors of mistuned bladed disks with

Mistuning is defined as the blade-to-blade variation of bladed disks caused by slight changes in material or geometric properties; mistuned blades can cause significant increases in vibrational response. The primary goal of this thesis is to describe the relationship between coupling index and amplification factors of mistuned bladed disks with various sets of parameters, targeting the veering zone. At around a coupling index of 0, the amplification factors tend to stay around 1. This is due to localization of energy, where no energy is "shared" between blades, and the response of mistuned blades remain at resonance. As coupling index increases, amplification factors reach a peak between coupling indices of 0.15 and 0.2, before experiencing a downward trend towards 1. As blade-to-disk interaction increases, more energy is "shared" across blades. This results in the upward trend of amplification factor as coupling index increases, until too much energy is "shared". Additionally, a reduced order model enriching-stripping process to match natural frequencies of Nastran simulations will be discussed. This thesis is a continuation of Saurav Sahoo's Master's thesis at Arizona State University, Approximate a-priori Estimation of the Response Amplification due to Geometric and Young's Modulus Mistuning.
ContributorsLiu, Gavin (Author) / Mignolet, Marc (Thesis director) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsGarcia, Andres (Author) / Parekh, Mohan (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity

This study experimentally investigated a selected methodology of mechanical torque testing of 3D printed gears. The motivation for pursuing this topic of research stemmed from a previous experience of one of the team members that propelled inspiration to quantify how different variables associated with 3D printing affect the structural integrity of the resulting piece. With this goal in mind, the team set forward with creating an experimental set-up and the construction of a test rig. However, due to restrictions in time and other unforeseen circumstances, this thesis underwent a change in scope. The new scope focused solely on determining if the selected methodology of mechanical torque testing was valid. Following the securement of parts and construction of a test rig, the team was able to conduct mechanical testing. This testing was done multiple times on an identically printed gear. The data collected showed results similar to a stress-strain curve when the torque was plotted against the angle of twist. In the resulting graph, the point of plastic deformation is clearly visible and the maximum torque the gear could withstand is clearly identifiable. Additionally, across the tests conducted, the results show high similarity in results. From this, it is possible to conclude that if the tests were repeated multiple times the maximum possible torque could be found. From that maximum possible torque, the mechanical strength of the tested gear could be identified.

ContributorsParekh, Mohan (Author) / Garcia, Andres (Co-author) / Middleton, James (Thesis director) / Murthy, Raghavendra (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

ContributorsJohnson, Kayla (Author) / Cardinale, Matthew (Co-author) / Murthy, Raghavendra (Thesis director) / Singh, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
Description

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component

This thesis presents a comprehensive investigation into the design of roller coasters. The study includes an overview of various roller coaster types, cart design, brake design, lift hill and launch design, support design, and roller coaster safety. Utilizing No Limits 2 to design the layout and CAD software for component design, a scale model roller coaster was designed. The physics of the roller coaster and its structures were analyzed and a scale model was produced. Afterward, an accelerometer was used to collect G force data as the cart moved along the track. However, the collected data differed from the expected results, as the launch speed was higher than predicted due to more friction than anticipated. As a result, further optimization of the design and models used to design the scale model roller coasters is necessary.

ContributorsCardinale, Matthew (Author) / Johnson, Kayla (Co-author) / Murthy, Raghavendra (Thesis director) / Singh, Anoop (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2023-05
131304-Thumbnail Image.png
Description
Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly

Traumatic brain injuries and the effects they can bring are becoming the main focus among researchers and physicians. Cycling is the leading sport with the most traumatic brain injuries, but the design of the cycling helmet has stayed the same for decades now. The technology of a bike is constantly getting developed and testing but the helmet is lagging behind. This project consists of designing and testing different cycling helmets through ANSYS simulations to determine the ideal geometry and features a cycling helmet must include, reducing the stress that the head experiences upon impact during a fall.
ContributorsDorman, Kyle Joseph (Author) / Kosaraju, Srinivas (Thesis director) / Bacalzo, Dean (Committee member) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to

The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to predict behavior of oversteer and excessive sideslip. I am fascinated by the topic as I have developed a background in the sport of drifting (controlled oversteer) and would like to contribute to the understanding of this lesser appreciated science. Highly valued components of the project such as velocities, forces, coefficients of friction, steering angles, slip angles, and multi-wheel analysis will all lead to a deeper understanding of relationships between aspects of a vehicle undergoing oversteer.
ContributorsRoden, Michael (Author) / Takahashi, Timothy (Thesis director) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to

The dynamics of friction as they relate to automobile behavior have been heavily analyzed under conditions that are favorable and predictable in the realm of daily driving. The scope of this project is to investigate behavior of slip in unfavorable conditions and develop a mathematical solution that allows users to predict behavior of oversteer and excessive sideslip. I am fascinated by the topic as I have developed a background in the sport of drifting (controlled oversteer) and would like to contribute to the understanding of this lesser appreciated science. Highly valued components of the project such as velocities, forces, coefficients of friction, steering angles, slip angles, and multi-wheel analysis will all lead to a deeper understanding of relationships between aspects of a vehicle undergoing oversteer.
ContributorsRoden, Michael Joseph (Author) / Takahashi, Timothy (Thesis director) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-12