Matching Items (2,656)
Filtering by

Clear all filters

153418-Thumbnail Image.png
Description
This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum

This study consisted of several related projects on dynamic spatial hearing by both human and robot listeners. The first experiment investigated the maximum number of sound sources that human listeners could localize at the same time. Speech stimuli were presented simultaneously from different loudspeakers at multiple time intervals. The maximum of perceived sound sources was close to four. The second experiment asked whether the amplitude modulation of multiple static sound sources could lead to the perception of auditory motion. On the horizontal and vertical planes, four independent noise sound sources with 60° spacing were amplitude modulated with consecutively larger phase delay. At lower modulation rates, motion could be perceived by human listeners in both cases. The third experiment asked whether several sources at static positions could serve as "acoustic landmarks" to improve the localization of other sources. Four continuous speech sound sources were placed on the horizontal plane with 90° spacing and served as the landmarks. The task was to localize a noise that was played for only three seconds when the listener was passively rotated in a chair in the middle of the loudspeaker array. The human listeners were better able to localize the sound sources with landmarks than without. The other experiments were with the aid of an acoustic manikin in an attempt to fuse binaural recording and motion data to localize sounds sources. A dummy head with recording devices was mounted on top of a rotating chair and motion data was collected. The fourth experiment showed that an Extended Kalman Filter could be used to localize sound sources in a recursive manner. The fifth experiment demonstrated the use of a fitting method for separating multiple sounds sources.
ContributorsZhong, Xuan (Author) / Yost, William (Thesis advisor) / Zhou, Yi (Committee member) / Dorman, Michael (Committee member) / Helms Tillery, Stephen (Committee member) / Arizona State University (Publisher)
Created2015
150688-Thumbnail Image.png
Description
Otoacoustic emissions (OAEs) are soft sounds generated by the inner ear and can be recorded within the ear canal. Since OAEs can reflect the functional status of the inner ear, OAE measurements have been widely used for hearing loss screening in the clinic. However, there are limitations in current clinical

Otoacoustic emissions (OAEs) are soft sounds generated by the inner ear and can be recorded within the ear canal. Since OAEs can reflect the functional status of the inner ear, OAE measurements have been widely used for hearing loss screening in the clinic. However, there are limitations in current clinical OAE measurements, such as the restricted frequency range, low efficiency and inaccurate calibration. In this dissertation project, a new method of OAE measurement which used a swept tone to evoke the stimulus frequency OAEs (SFOAEs) was developed to overcome the limitations of current methods. In addition, an in-situ calibration was applied to equalize the spectral level of the swept-tone stimulus at the tympanic membrane (TM). With this method, SFOAEs could be recorded with high resolution over a wide frequency range within one or two minutes. Two experiments were conducted to verify the accuracy of the in-situ calibration and to test the performance of the swept-tone SFOAEs. In experiment I, the calibration of the TM sound pressure was verified in both acoustic cavities and real ears by using a second probe microphone. In addition, the benefits of the in-situ calibration were investigated by measuring OAEs under different calibration conditions. Results showed that the TM pressure could be predicted correctly, and the in-situ calibration provided the most reliable results in OAE measurements. In experiment II, a three-interval paradigm with a tracking-filter technique was used to record the swept-tone SFOAEs in 20 normal-hearing subjects. The test-retest reliability of the swept-tone SFOAEs was examined using a repeated-measure design under various stimulus levels and durations. The accuracy of the swept-tone method was evaluated by comparisons with a standard method using discrete pure tones. Results showed that SFOAEs could be reliably and accurately measured with the swept-tone method. Comparing with the pure-tone approach, the swept-tone method showed significantly improved efficiency. The swept-tone SFOAEs with in-situ calibration may be an alternative of current clinical OAE measurements for more detailed evaluation of inner ear function and accurate diagnosis.
ContributorsChen, Shixiong (Author) / Bian, Lin (Thesis advisor) / Yost, William (Committee member) / Azuma, Tamiko (Committee member) / Dorman, Michael (Committee member) / Arizona State University (Publisher)
Created2012