Matching Items (33)
Filtering by

Clear all filters

152291-Thumbnail Image.png
Description
Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a

Rabies disease remains enzootic among raccoons, skunks, foxes and bats in the United States. It is of primary concern for public-health agencies to control spatial spread of rabies in wildlife and its potential spillover infection of domestic animals and humans. Rabies is invariably fatal in wildlife if untreated, with a non-negligible incubation period. Understanding how this latency affects spatial spread of rabies in wildlife is the concern of chapter 2 and 3. Chapter 1 deals with the background of mathematical models for rabies and lists main objectives. In chapter 2, a reaction-diffusion susceptible-exposed-infected (SEI) model and a delayed diffusive susceptible-infected (SI) model are constructed to describe the same epidemic process -- rabies spread in foxes. For the delayed diffusive model a non-local infection term with delay is resulted from modeling the dispersal during incubation stage. Comparison is made regarding minimum traveling wave speeds of the two models, which are verified using numerical experiments. In chapter 3, starting with two Kermack and McKendrick's models where infectivity, death rate and diffusion rate of infected individuals can depend on the age of infection, the asymptotic speed of spread $c^\ast$ for the cumulated force of infection can be analyzed. For the special case of fixed incubation period, the asymptotic speed of spread is governed by the same integral equation for both models. Although explicit solutions for $c^\ast$ are difficult to obtain, assuming that diffusion coefficient of incubating animals is small, $c^\ast$ can be estimated in terms of model parameter values. Chapter 4 considers the implementation of realistic landscape in simulation of rabies spread in skunks and bats in northeast Texas. The Finite Element Method (FEM) is adopted because the irregular shapes of realistic landscape naturally lead to unstructured grids in the spatial domain. This implementation leads to a more accurate description of skunk rabies cases distributions.
ContributorsLiu, Hao (Author) / Kuang, Yang (Thesis advisor) / Jackiewicz, Zdzislaw (Committee member) / Lanchier, Nicolas (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2013
152943-Thumbnail Image.png
Description
In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which

In a 2004 paper, John Nagy raised the possibility of the existence of a hypertumor \emph{i.e.}, a focus of aggressively reproducing parenchyma cells that invade part or all of a tumor. His model used a system of nonlinear ordinary differential equations to find a suitable set of conditions for which these hypertumors exist. Here that model is expanded by transforming it into a system of nonlinear partial differential equations with diffusion, advection, and a free boundary condition to represent a radially symmetric tumor growth. Two strains of parenchymal cells are incorporated; one forming almost the entirety of the tumor while the much more aggressive strain

appears in a smaller region inside of the tumor. Simulations show that if the aggressive strain focuses its efforts on proliferating and does not contribute to angiogenesis signaling when in a hypoxic state, a hypertumor will form. More importantly, this resultant aggressive tumor is paradoxically prone to extinction and hypothesize is the cause of necrosis in many vascularized tumors.
ContributorsAlvarez, Roberto L (Author) / Milner, Fabio A (Thesis advisor) / Nagy, John D. (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Mahalov, Alex (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2014
152531-Thumbnail Image.png
Description
Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations.

Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations. The map which encapsulates the population development from one year to the next is approximated at the origin (the extinction state) by a linear or homogeneous map. The (cone) spectral radius of this approximating map is the threshold between extinction and persistence. General persistence results are applied to three particular models: a size-structured plant population model, a diffusion model (with both Neumann and Dirichlet boundary conditions) for a dispersing population of males and females that only mate and reproduce once during a very short season, and a rank-structured model for a population of males and females.
ContributorsJin, Wen (Author) / Thieme, Horst (Thesis advisor) / Milner, Fabio (Committee member) / Quigg, John (Committee member) / Smith, Hal (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2014
153262-Thumbnail Image.png
Description
In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota in particular lends itself to ecological stoichiometry, which is a powerful framework for mathematical ecology. Three models are developed based on the cell quota principal in order to demonstrate its applications beyond chemostat culture.

First, a data-driven model is derived for neutral lipid synthesis in green microalgae with respect to nitrogen limitation. This model synthesizes several established frameworks in phycology and ecological stoichiometry. The model demonstrates how the cell quota is a useful abstraction for understanding the metabolic shift to neutral lipid production that is observed in certain oleaginous species.

Next a producer-grazer model is developed based on the cell quota model and nutrient recycling. The model incorporates a novel feedback loop to account for animal toxicity due to accumulation of nitrogen waste. The model exhibits rich, complex dynamics which leave several open mathematical questions.

Lastly, disease dynamics in vivo are in many ways analogous to those of an ecosystem, giving natural extensions of the cell quota concept to disease modeling. Prostate cancer can be modeled within this framework, with androgen the limiting nutrient and the prostate and cancer cells as competing species. Here the cell quota model provides a useful abstraction for the dependence of cellular proliferation and apoptosis on androgen and the androgen receptor. Androgen ablation therapy is often used for patients in biochemical recurrence or late-stage disease progression and is in general initially effective. However, for many patients the cancer eventually develops resistance months to years after treatment begins. Understanding how and predicting when hormone therapy facilitates evolution of resistant phenotypes has immediate implications for treatment. Cell quota models for prostate cancer can be useful tools for this purpose and motivate applications to other diseases.
ContributorsPacker, Aaron (Author) / Kuang, Yang (Thesis advisor) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Kostelich, Eric (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
150973-Thumbnail Image.png
Description
In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling

In complex consumer-resource type systems, where diverse individuals are interconnected and interdependent, one can often anticipate what has become known as the tragedy of the commons, i.e., a situation, when overly efficient consumers exhaust the common resource, causing collapse of the entire population. In this dissertation I use mathematical modeling to explore different variations on the consumer-resource type systems, identifying some possible transitional regimes that can precede the tragedy of the commons. I then reformulate it as a game of a multi-player prisoner's dilemma and study two possible approaches for preventing it, namely direct modification of players' payoffs through punishment/reward and modification of the environment in which the interactions occur. I also investigate the questions of whether the strategy of resource allocation for reproduction or competition would yield higher fitness in an evolving consumer-resource type system and demonstrate that the direction in which the system will evolve will depend not only on the state of the environment but largely on the initial composition of the population. I then apply the developed framework to modeling cancer as an evolving ecological system and draw conclusions about some alternative approaches to cancer treatment.
ContributorsKareva, Irina (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Collins, James (Committee member) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Arizona State University (Publisher)
Created2012
150637-Thumbnail Image.png
Description
Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both

Bacteriophage (phage) are viruses that infect bacteria. Typical laboratory experiments show that in a chemostat containing phage and susceptible bacteria species, a mutant bacteria species will evolve. This mutant species is usually resistant to the phage infection and less competitive compared to the susceptible bacteria species. In some experiments, both susceptible and resistant bacteria species, as well as phage, can coexist at an equilibrium for hundreds of hours. The current research is inspired by these observations, and the goal is to establish a mathematical model and explore sufficient and necessary conditions for the coexistence. In this dissertation a model with infinite distributed delay terms based on some existing work is established. A rigorous analysis of the well-posedness of this model is provided, and it is proved that the susceptible bacteria persist. To study the persistence of phage species, a "Phage Reproduction Number" (PRN) is defined. The mathematical analysis shows phage persist if PRN > 1 and vanish if PRN < 1. A sufficient condition and a necessary condition for persistence of resistant bacteria are given. The persistence of the phage is essential for the persistence of resistant bacteria. Also, the resistant bacteria persist if its fitness is the same as the susceptible bacteria and if PRN > 1. A special case of the general model leads to a system of ordinary differential equations, for which numerical simulation results are presented.
ContributorsHan, Zhun (Author) / Smith, Hal (Thesis advisor) / Armbruster, Dieter (Committee member) / Kawski, Matthias (Committee member) / Kuang, Yang (Committee member) / Thieme, Horst (Committee member) / Arizona State University (Publisher)
Created2012
154089-Thumbnail Image.png
Description
Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue

Swarms of animals, fish, birds, locusts etc. are a common occurrence but their coherence and method of organization poses a major question for mathematics and biology.The Vicsek and the Attraction-Repulsion are two models that have been proposed to explain the emergence of collective motion. A major issue for the Vicsek Model is that its particles are not attracted to each other, leaving the swarm with alignment in velocity but without spatial coherence. Restricting the particles to a bounded domain generates global spatial coherence of swarms while maintaining velocity alignment. While individual particles are specularly reflected at the boundary, the swarm as a whole is not. As a result, new dynamical swarming solutions are found.

The Attraction-Repulsion Model set with a long-range attraction and short-range repulsion interaction potential typically stabilizes to a well-studied flock steady state solution. The particles for a flock remain spatially coherent but have no spatial bound and explore all space. A bounded domain with specularly reflecting walls traps the particles within a specific region. A fundamental refraction law for a swarm impacting on a planar boundary is derived. The swarm reflection varies from specular for a swarm dominated by

kinetic energy to inelastic for a swarm dominated by potential energy. Inelastic collisions lead to alignment with the wall and to damped pulsating oscillations of the swarm. The fundamental refraction law provides a one-dimensional iterative map that allows for a prediction and analysis of the trajectory of the center of mass of a flock in a channel and a square domain.

The extension of the wall collisions to a scattering experiment is conducted by setting two identical flocks to collide. The two particle dynamics is studied analytically and shows a transition from scattering: diverging flocks to bound states in the form of oscillations or parallel motions. Numerical studies of collisions of flocks show the same transition where the bound states become either a single translating flock or a rotating (mill).
ContributorsThatcher, Andrea (Author) / Armbruster, Hans (Thesis advisor) / Motsch, Sebastien (Committee member) / Ringhofer, Christian (Committee member) / Platte, Rodrigo (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2015
156315-Thumbnail Image.png
Description
Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges

occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gifting

of cattle among East African herders or food sharing among vampire bats. With the

broad goal of better understanding the mathematics of such binary welfare and

Need-based transfers (NBTs) are a form of risk-pooling in which binary welfare exchanges

occur to preserve the viable participation of individuals in an economy, e.g. reciprocal gifting

of cattle among East African herders or food sharing among vampire bats. With the

broad goal of better understanding the mathematics of such binary welfare and risk pooling,

agent-based simulations are conducted to explore socially optimal transfer policies

and sharing network structures, kinetic exchange models that utilize tools from the kinetic

theory of gas dynamics are utilized to characterize the wealth distribution of an NBT economy,

and a variant of repeated prisoner’s dilemma is analyzed to determine whether and

why individuals would participate in such a system of reciprocal altruism.

From agent-based simulation and kinetic exchange models, it is found that regressive

NBT wealth redistribution acts as a cutting stock optimization heuristic that most efficiently

matches deficits to surpluses to improve short-term survival; however, progressive

redistribution leads to a wealth distribution that is more stable in volatile environments and

therefore is optimal for long-term survival. Homogeneous sharing networks with low variance

in degree are found to be ideal for maintaining community viability as the burden and

benefit of NBTs is equally shared. Also, phrasing NBTs as a survivor’s dilemma reveals

parameter regions where the repeated game becomes equivalent to a stag hunt or harmony

game, and thus where cooperation is evolutionarily stable.
ContributorsKayser, Kirk (Author) / Armbruster, Dieter (Thesis advisor) / Lampert, Adam (Committee member) / Ringhofer, Christian (Committee member) / Motsch, Sebastien (Committee member) / Gardner, Carl (Committee member) / Arizona State University (Publisher)
Created2018
156612-Thumbnail Image.png
Description
The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of

The role of climate change, as measured in terms of changes in the climatology of geophysical variables (such as temperature and rainfall), on the global distribution and burden of vector-borne diseases (VBDs) remains a subject of considerable debate. This dissertation attempts to contribute to this debate via the use of mathematical (compartmental) modeling and statistical data analysis. In particular, the objective is to find suitable values and/or ranges of the climate variables considered (typically temperature and rainfall) for maximum vector abundance and consequently, maximum transmission intensity of the disease(s) they cause.

Motivated by the fact that understanding the dynamics of disease vector is crucial to understanding the transmission and control of the VBDs they cause, a novel weather-driven deterministic model for the population biology of the mosquito is formulated and rigorously analyzed. Numerical simulations, using relevant weather and entomological data for Anopheles mosquito (the vector for malaria), show that maximum mosquito abundance occurs when temperature and rainfall values lie in the range [20-25]C and [105-115] mm, respectively.

The Anopheles mosquito ecology model is extended to incorporate human dynamics. The resulting weather-driven malaria transmission model, which includes many of the key aspects of malaria (such as disease transmission by asymptomatically-infectious humans, and enhanced malaria immunity due to repeated exposure), was rigorously analyzed. The model which also incorporates the effect of diurnal temperature range (DTR) on malaria transmission dynamics shows that increasing DTR shifts the peak temperature value for malaria transmission from 29C (when DTR is 0C) to about 25C (when DTR is 15C).

Finally, the malaria model is adapted and used to study the transmission dynamics of chikungunya, dengue and Zika, three diseases co-circulating in the Americas caused by the same vector (Aedes aegypti). The resulting model, which is fitted using data from Mexico, is used to assess a few hypotheses (such as those associated with the possible impact the newly-released dengue vaccine will have on Zika) and the impact of variability in climate variables on the dynamics of the three diseases. Suitable temperature and rainfall ranges for the maximum transmission intensity of the three diseases are obtained.
ContributorsOkuneye, Kamaldeen O (Author) / Gumel, Abba B (Thesis advisor) / Kuang, Yang (Committee member) / Smith, Hal (Committee member) / Thieme, Horst (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2018
157107-Thumbnail Image.png
Description
This dissertation examines six different models in the field of econophysics using interacting particle systems as the basis of exploration. In each model examined, the underlying structure is a graph G = (V , E ), where each x ∈ V represents an individual who is characterized by the number

This dissertation examines six different models in the field of econophysics using interacting particle systems as the basis of exploration. In each model examined, the underlying structure is a graph G = (V , E ), where each x ∈ V represents an individual who is characterized by the number of coins in her possession at time t. At each time step t, an edge (x, y) ∈ E is chosen at random, resulting in an exchange of coins between individuals x and y according to the rules of the model. Random variables ξt, and ξt(x) keep track of the current configuration and number of coins individual x has at time t respectively. Of particular interest is the distribution of coins in the long run. Considered first are the uniform reshuffling model, immediate exchange model and model with saving propensity. For each of these models, the number of coins an individual can have is nonnegative and the total number of coins in the system is conserved for all time. It is shown here that the distribution of coins converges to the exponential distribution, gamma distribution and a pseudo gamma distribution respectively. The next two models introduce debt, however, the total number of coins again remains fixed. It is shown here that when there is an individual debt limit, the number of coins per individual converges to a shifted exponential distribution. Alternatively, when a collective debt limit is imposed on the whole population, a heuristic argument is given supporting the conjecture that the distribution of coins converges to an asymmetric Laplace distribution. The final model considered focuses on the effect of cooperation on a population. Unlike the previous models discussed here, the total number of coins in the system at any given time is not bounded and the process evolves in continuous time rather than in discrete time. For this model, death of an individual will occur if they run out of coins. It is shown here that the survival probability for the population is impacted by the level of cooperation along with how productive the population is as whole.
ContributorsReed, Stephanie Jo (Author) / Lanchier, Nicolas (Thesis advisor) / Smith, Hal (Committee member) / Gumel, Abba (Committee member) / Motsch, Sebastien (Committee member) / Camacho, Erika (Committee member) / Arizona State University (Publisher)
Created2019