Matching Items (13)

132483-Thumbnail Image.png

Immunological Responses to the White-Nose Syndrome Pathogen and their Potential Use as Control

Description

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats.

White-nose syndrome (WNS) is a fungal infection devastating bat populations throughout eastern North America. WNS is caused by a fungus, Pseudogymnoascus destructans (Pd), that invades the skin of hibernating bats. While there are a number of treatments being researched, there is currently no effective treatment for WNS that is deployed in the field, except a few being tested on a limited scale. Bats have lowered immune function and response during hibernation, which may increase susceptibility to infection during the winter months. Antimicrobial peptides (AMPs) are a crucial component of the innate immune system and serve as barriers against infection. AMPs are constitutively expressed on skin and facilitate wound healing, stimulate other immune responses, and may also stay active on bat skin during hibernation. AMPs are expressed by all tissues, have direct killing abilities against microbes, and are a potential treatment for bats infected with Pd. In this investigation, the fungicidal activity of several readily available commercial AMPs were compared, and killing assay protocols previously investigated by Frasier and Lake were replicated to establish a control trial for use in future killing assays. Another aim of this investigation was to synthesize a bat-derived AMP for use in the killing assay. Sequences of bat-derived AMPs have been identified in bat skin samples obtained from a large geographic sampling of susceptible and resistant species. Contact was made with GenScript Inc., the company from which commercially available AMPs were purchased, to determine the characteristics of peptide sequences needed to synthesize an AMP for lab use. Based on recommendations from GenScript Inc., peptide sequences need to have a hydrophobicity of less than 50% and a sequence length of less than 50 amino acids. These criteria serve as a potential barrier because none of the known bat-derived sequences analyzed satisfy both of these requirements. The final aim of this study was to generate a conceptual model of the immune response molecules activated when bats are exposed to a fungal pathogen such as Pd. Overall, this work investigated sources of variability between trials of the killing assay, analyzed known bat-derived peptide sequences, and generated a conceptual model that will serve as a guideline for identification of immune response molecules on the skin of bats in future proteomics work.

Contributors

Agent

Created

Date Created
  • 2019-05

134090-Thumbnail Image.png

A Review of the Current Understanding on Immune Cell Sensitivity to Variation in Energy Availability

Description

This study takes a broad look into the existing research on the relationship between two physiological topics, nutrition and immunity in vertebrates, specifically the mammalian and avian branches. This was

This study takes a broad look into the existing research on the relationship between two physiological topics, nutrition and immunity in vertebrates, specifically the mammalian and avian branches. This was achieved by critiquing available studies on different types of immune cells, and how variable energy availability, as well as specific pathogens, impact cell function. Notably, most studies examined individuals with compromised immune systems, which reveals an existing knowledge gap in the linkages between nutrition and immunity in healthy organisms. Links between immunity and nutrition were identified across the studies, with the three main energy molecules, carbohydrates, lipids, and proteins, implicated in functional roles as immune modulators. Stimulatory and inhibitory effects occur dependent on elevated and depleted nutrient levels, and multiple cell types are sensitive to changes in nutrient availability. Further studies should be conducted on healthy individuals of model species, as well as wildlife and other non-model species to identify and describe the effects of host nutritional status on the spread of pathogens and the implications at the population level for humans, domestic animals, and wildlife.

Contributors

Agent

Created

Date Created
  • 2017-12

134509-Thumbnail Image.png

Can the phytohemagglutinin challenge be used to predict disease severity in a host?

Description

Phytohemagglutinin (PHA) is a plant lectin commonly used to stimulate and test responses of the immune system and is known to induce T cell proliferation, agglutinate human leukocytes, and yield

Phytohemagglutinin (PHA) is a plant lectin commonly used to stimulate and test responses of the immune system and is known to induce T cell proliferation, agglutinate human leukocytes, and yield adjustments in lymphocyte populations. What is not well know is how responses to PHA correlate with a host's ability to resist or recover from pathogen invasion. This study uses information from previously published studies to determine whether or not PHA can be a good indicator of disease severity or disease resistance in a host. With PHA having the abilities that it does, immune responses to PHA may correlate with responses important for pathogen resistance and clearance. Such a relationship could only be uncovered if in vivo or in vitro responses to PHA are measured and, independent from the PHA challenge, symptoms and/or mortality rates of hosts are documented after pathogen exposure. An in vitro response can be detected by measuring cellular proliferation in response to PHA followed by separate cell cultures exposed to a pathogen. While an in vivo response can be detected by measuring variation in swelling in response to an injection of PHA. In reviewing a broad range of articles that meet my criteria, the majority of articles failed to show a strong relationship between PHA and disease severity or disease resistance. Therefore, immunologists must consider the usefulness of the PHA tests as a measure of immunocompetence, which is a host's ability to predict response to a pathogen. According to the literature, using PHA does not predict responses to pathogen invasion. However, it is possible that with carefully designed experiments, it could be determined that PHA does provide an indication of pathogen resistance in certain host species exposed to specific pathogen.

Contributors

Agent

Created

Date Created
  • 2017-05

134715-Thumbnail Image.png

Evaluating the viability of a DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest

Description

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for

Sexually transmitted diseases like gonorrhea and chlamydia, standardly treated with antibiotics, produce over 1.2 million cases annually in the emergency department (Jenkins et al., 2013). To determine a need for antibiotics, hospital labs utilize bacterial cultures to isolate and identify possible pathogens. Unfortunately, this technique can take up to 72 hours, leading to several physicians presumptively treating patients based solely on history and physical presentation. With vague standards for diagnosis and a high percentage of asymptomatic carriers, several patients undergo two scenarios; over- or under-treatment. These two scenarios can lead to consequences like unnecessary exposure to antibiotics and development of secondary conditions (for example: pelvic inflammatory disease, infertility, etc.). This presents a need for a laboratory technique that can provide reliable results in an efficient matter. The viability of DNA-based chip targeted for C. trachomatis, N. gonorrhoeae, and other pathogens of interest were evaluated. The DNA-based chip presented several advantages as it can be easily integrated as a routine test given the process is already well-known, is customizable and able to target multiple pathogens within a single test and has the potential to return results within a few hours as opposed to days. As such, implementation of a DNA-based chip as a diagnostic tool is a timely and potentially impactful investigation.

Contributors

Agent

Created

Date Created
  • 2016-12

134956-Thumbnail Image.png

Investigating the Skin Immune Proteome of the White-Nose Syndrome Resistant Gray Bat, Myotis grisescens

Description

White-nose syndrome (WNS) is a cutaneous fungal infection caused by Pseudogymnoascus destructans (Pd) which was first observed in the United States in 2006. Pd infects bats during hibernation and leads

White-nose syndrome (WNS) is a cutaneous fungal infection caused by Pseudogymnoascus destructans (Pd) which was first observed in the United States in 2006. Pd infects bats during hibernation and leads to the development of cutaneous lesions and behavioral changes that can result in the animal's death. This study generated the first complete bat skin proteome for the WNS resistant gray bat (Myotis grisescens) to optimize sample preparation methods and identify immune proteins that may signal resistance. Wing tissue was collected from a female gray bat and processed in a Barocycler using 4M or 8M urea followed by an in-gel trypsin digestion of pooled samples and processing of separate samples without digestion specifically to capture and identify small antimicrobial peptides. Both undigested and digested samples were analyzed using a Thermo Fisher LTQ Orbitrap Velos mass spectrometer and interpreted using PEAKS software. A total of 29 immune proteins were identified including the antimicrobial peptide dermcidin. This method will be applied to a larger range of samples from five species variably impacted by WNS to compare skin proteomes with the aim of identifying immune proteins that are responsible for resistance at the barrier where Pd invades.

Contributors

Agent

Created

Date Created
  • 2017-05

131257-Thumbnail Image.png

Establishing a foundation for investigating the role of nutrition on immunity in wildlife

Description

This review examines existing research on relationships between two established disciplines, nutrition and immunology, with a specific focus on the complement system in vertebrate organisms and how its functioning is

This review examines existing research on relationships between two established disciplines, nutrition and immunology, with a specific focus on the complement system in vertebrate organisms and how its functioning is affected by nutritional status. The available studies assessed the effects of certain vitamins, lipids, carbohydrates, proteins, and overall body condition, measured as body mass index (BMI), on the three complement activation pathways (classical, lectin, and alternative) and their components (C1q, C1s, C3, C4, C5, C6, C8, C9, and C3 proactivator) in blood plasma. Across studies, an increased abundance and/or activity of complement components in plasma was observed in rodents and humans after intake of vitamin A, vitamin C, lipids, and proteins. Higher relative activity was also observed in bats with high body mass index (BMI), a measure of general body condition. Overall, results indicate that nutritional status has a pronounced effect on the complement system in species studied. However, only few studies have investigated effects of nutrition on complement in non-model organisms, such as wildlife, indicating major gaps in knowledge related to taxa that more likely experience nutrient limitations, e.g. through seasonal variation in resources, droughts, etc. as compared with model organisms used under laboratory settings. Understanding potential relationships between nutrition and immunity in a broader suite of species is crucial, nonetheless, due to the number of emerging wildlife diseases that are spreading at an alarming rate. Therefore, I critiqued the available evidence to help predict how wildlife hosts will resist or tolerate diseases, such as white-nose syndrome, sylvatic plague, and avian influenza, based on the nutritional status of an individual host. I also considered methodological approaches and assessed their potential for use in wildlife. The studies in this review used different methods to measure complement protein activity, such as hemolytic and functional assays. Future studies can also take advantage of newer high-throughput methods, such as proteomics combined with functional assays. This can lead to a more comprehensive understanding of the efficacy of complement proteins to neutralize invading pathogens under different host nutritional states. My investigation into relationships between nutrition and complement will also inform similar investigations to uncover effects of nutrition on other aspects of immunity, such as antimicrobial peptides. Overall, my assessment concludes that complement is a good candidate for investigating the role of nutrition on immunity in wildlife because it is sensitive to changes in some nutritional components, particularly vitamins, lipids, and proteins.

Contributors

Agent

Created

Date Created
  • 2020-05

Mathematically Modelling Population Dynamics of the Honeybee Infected with Varroa destructor and the Related Viruses

Description

The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis

The decline of honeybee colonies around the world has been linked to the presence of the Varroa destructor, a mite acting as a virus vector for the Acute Bee Paralysis Virus. We developed a model of the infestation of the Apis melliifera honeybee colony by the Acute Bee Paralysis Virus, which is transmitted by the parasitic Varroa destructor. This is a four dimensional system of nonlinear ODE's for healthy and virus infected bees, total number of mites in the colony and number of mites that carry the virus. The Acute Bee Paralysis Virus can be transmitted between infected and uninfected bees, infected mite to adult bee, infected bee to phoretic mite, and reproductive mites to bee brood. This model is studied with analytical techniques deriving the conditions under which the bee colony can fight off an Acute Bee Paralysis Virus epidemic.

Contributors

Agent

Created

Date Created
  • 2015-12

133592-Thumbnail Image.png

Understanding Differences Between Susceptibility and Resistance to White-Nose Syndrome in Bats: Methodological Optimization

Description

White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths

White-nose syndrome (WNS) is a fungal disease that infects hibernating bats of multiple species across large portions of eastern North America. To date, WNS has been responsible for the deaths of over seven million bats. It is not yet known why certain species are able to resist infection. Since the fungus invades the skin and some resistant species show no signs of the characteristic cutaneous lesions, it seems likely that resistant species contain specific defense mechanisms within their skin, such as antimicrobial peptides (AMPs) and other immunologically relevant proteins expressed by specific cell types or as secreted soluble components. Proteomics could be a useful tool for understanding differences in susceptibility, and could help identify AMPs that could be synthesized and used as control agents against the spread of the causative fungus. This study is the first to optimize proteomics methods for bat wing tissues in order to compare the skin proteomes of species variably impacted by WNS, including those of two endangered species. Further tests are planned to investigate methods of increasing protein yield without altering the size of the tissue sample collected, as well as the analysis of mass spectrometry data from processed skin tissues of five bat species differentially affected by WNS.

Contributors

Agent

Created

Date Created
  • 2018-05

133305-Thumbnail Image.png

Digging Deeper into Vitamin Supplements: A, B12, and Multivitamins

Description

Vitamin supplements have beneficial and adverse effects depending on the dosage given and the age and sex of the recipient. Vitamin supplements have been extremely profitable in the health industry,

Vitamin supplements have beneficial and adverse effects depending on the dosage given and the age and sex of the recipient. Vitamin supplements have been extremely profitable in the health industry, but there is limited scientific data supporting vitamin supplement benefits. Many studies over the last decade have shown that vitamin supplements provide few health benefits and can lead to adverse effects, such as abnormal bone growth, birth defects, or an increased risk of cancer. Some researchers state that people with a specific vitamin deficiency should take vitamin supplements because the supplement can alleviate this deficiency. Many healthy people take vitamin supplements to prevent disease or have better health, but some researchers argue this is a misconception. Most health organizations indicate that consuming vitamins should be through diet, not supplements. The value of dietary supplements, most of which are consumed in developed countries, has been a controversial topic, because the beneficial effects of taking vitamin supplements is hotly contested. Many experts in the field of nutritional physiology suggest that Americans adequately receive enough vitamins in their diet and do not need to take vitamin supplements. Researchers at John Hopkins announced that the United States should stop spending money on vitamin supplements. Their research has found no benefits to taking vitamin supplements, because most people in industrialized areas are well-nourished. In this study, I have gathered that vitamin supplements are not beneficial when one has a sufficiently nutrient-rich diet; whereas, one who has a vitamin deficient diet can benefit from taking vitamin supplements. Furthermore, I have gathered that people older than 65-years-old should take vitamin B12 because vitamin B12 levels decrease with age. There is not enough evidence to prove or disprove that vitamin supplements are generally beneficial. In fact, I gathered that vitamin supplements may even be harmful. I propose that further studies should be conducted to discover the truth about the possible benefits of vitamin supplementation for healthy individuals and among people with different health conditions, activity levels, and nutrient requirements.

Contributors

Created

Date Created
  • 2018-05

133090-Thumbnail Image.png

Applying Nutritional Education within the Primary Care Clinical Setting for the Prevention and Treatment of Chronic Cardiovascular Diseases

Description

Nutrition has been around for as long as human beings have resided on the planet, giving it one of the most impactful roles in history, particularly in medicine. Certain herbs

Nutrition has been around for as long as human beings have resided on the planet, giving it one of the most impactful roles in history, particularly in medicine. Certain herbs or dietary restrictions could help individuals recover from illnesses—this form of healing has been passed down generations, which medical providers from all over the world take advantage of. Before the era of antibiotics and pharmaceutical companies, food was the medicine used to treat. As civilization has flourished and become progressive, it seems that certain qualities of the past have been forgotten, such as the power of diet. Medical providers like to push patients towards pharmaceutical intervention because of the financial profit that this method entails, which has been shown to backfire. These interventions are not solving the true problem, but only applying a short-term solution. Dietary restrictions as well as the increase in heart-healthy foods can entirely reverse these conditions in order to avoid the fatal effects they may have. With the increase in nutritional education amongst the population via medical providers, specifically primary care providers, patients are able to reverse the symptoms of effects of chronic cardiovascular disease amongst others.

Contributors

Agent

Created

Date Created
  • 2018-12