Matching Items (48)

158883-Thumbnail Image.png

Analysis Methods for No-Confounding Screening Designs

Description

Nonregular designs are a preferable alternative to regular resolution four designs because they avoid confounding two-factor interactions. As a result nonregular designs can estimate and identify a few active two-factor

Nonregular designs are a preferable alternative to regular resolution four designs because they avoid confounding two-factor interactions. As a result nonregular designs can estimate and identify a few active two-factor interactions. However, due to the sometimes complex alias structure of nonregular designs, standard screening strategies can fail to identify all active effects. In this research, two-level nonregular screening designs with orthogonal main effects will be discussed. By utilizing knowledge of the alias structure, a design based model selection process for analyzing nonregular designs is proposed.

The Aliased Informed Model Selection (AIMS) strategy is a design specific approach that is compared to three generic model selection methods; stepwise regression, least absolute shrinkage and selection operator (LASSO), and the Dantzig selector. The AIMS approach substantially increases the power to detect active main effects and two-factor interactions versus the aforementioned generic methodologies. This research identifies design specific model spaces; sets of models with strong heredity, all estimable, and exhibit no model confounding. These spaces are then used in the AIMS method along with design specific aliasing rules for model selection decisions. Model spaces and alias rules are identified for three designs; 16-run no-confounding 6, 7, and 8-factor designs. The designs are demonstrated with several examples as well as simulations to show the AIMS superiority in model selection.

A final piece of the research provides a method for augmenting no-confounding designs based on a model spaces and maximum average D-efficiency. Several augmented designs are provided for different situations. A final simulation with the augmented designs shows strong results for augmenting four additional runs if time and resources permit.

Contributors

Agent

Created

Date Created
  • 2020

152087-Thumbnail Image.png

No-confounding designs of 20 and 24 runs for screening experiments and a design selection methodology

Description

Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These

Nonregular screening designs can be an economical alternative to traditional resolution IV 2^(k-p) fractional factorials. Recently 16-run nonregular designs, referred to as no-confounding designs, were introduced in the literature. These designs have the property that no pair of main effect (ME) and two-factor interaction (2FI) estimates are completely confounded. In this dissertation, orthogonal arrays were evaluated with many popular design-ranking criteria in order to identify optimal 20-run and 24-run no-confounding designs. Monte Carlo simulation was used to empirically assess the model fitting effectiveness of the recommended no-confounding designs. The results of the simulation demonstrated that these new designs, particularly the 24-run designs, are successful at detecting active effects over 95% of the time given sufficient model effect sparsity. The final chapter presents a screening design selection methodology, based on decision trees, to aid in the selection of a screening design from a list of published options. The methodology determines which of a candidate set of screening designs has the lowest expected experimental cost.

Contributors

Agent

Created

Date Created
  • 2013

155712-Thumbnail Image.png

Data Analysis and Experimental Design for Accelerated Life Testing with Heterogeneous Group Effects

Description

In accelerated life tests (ALTs), complete randomization is hardly achievable because of economic and engineering constraints. Typical experimental protocols such as subsampling or random blocks in ALTs result in a

In accelerated life tests (ALTs), complete randomization is hardly achievable because of economic and engineering constraints. Typical experimental protocols such as subsampling or random blocks in ALTs result in a grouped structure, which leads to correlated lifetime observations. In this dissertation, generalized linear mixed model (GLMM) approach is proposed to analyze ALT data and find the optimal ALT design with the consideration of heterogeneous group effects.

Two types of ALTs are demonstrated for data analysis. First, constant-stress ALT (CSALT) data with Weibull failure time distribution is modeled by GLMM. The marginal likelihood of observations is approximated by the quadrature rule; and the maximum likelihood (ML) estimation method is applied in iterative fashion to estimate unknown parameters including the variance component of random effect. Secondly, step-stress ALT (SSALT) data with random group effects is analyzed in similar manner but with an assumption of exponentially distributed failure time in each stress step. Two parameter estimation methods, from the frequentist’s and Bayesian points of view, are applied; and they are compared with other traditional models through simulation study and real example of the heterogeneous SSALT data. The proposed random effect model shows superiority in terms of reducing bias and variance in the estimation of life-stress relationship.

The GLMM approach is particularly useful for the optimal experimental design of ALT while taking the random group effects into account. In specific, planning ALTs under nested design structure with random test chamber effects are studied. A greedy two-phased approach shows that different test chamber assignments to stress conditions substantially impact on the estimation of unknown parameters. Then, the D-optimal test plan with two test chambers is constructed by applying the quasi-likelihood approach. Lastly, the optimal ALT planning is expanded for the case of multiple sources of random effects so that the crossed design structure is also considered, along with the nested structure.

Contributors

Agent

Created

Date Created
  • 2017

151329-Thumbnail Image.png

Projection properties and analysis methods for six to fourteen factor no confounding designs in 16 runs

Description

During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental

During the initial stages of experimentation, there are usually a large number of factors to be investigated. Fractional factorial (2^(k-p)) designs are particularly useful during this initial phase of experimental work. These experiments often referred to as screening experiments help reduce the large number of factors to a smaller set. The 16 run regular fractional factorial designs for six, seven and eight factors are in common usage. These designs allow clear estimation of all main effects when the three-factor and higher order interactions are negligible, but all two-factor interactions are aliased with each other making estimation of these effects problematic without additional runs. Alternatively, certain nonregular designs called no-confounding (NC) designs by Jones and Montgomery (Jones & Montgomery, Alternatives to resolution IV screening designs in 16 runs, 2010) partially confound the main effects with the two-factor interactions but do not completely confound any two-factor interactions with each other. The NC designs are useful for independently estimating main effects and two-factor interactions without additional runs. While several methods have been suggested for the analysis of data from nonregular designs, stepwise regression is familiar to practitioners, available in commercial software, and is widely used in practice. Given that an NC design has been run, the performance of stepwise regression for model selection is unknown. In this dissertation I present a comprehensive simulation study evaluating stepwise regression for analyzing both regular fractional factorial and NC designs. Next, the projection properties of the six, seven and eight factor NC designs are studied. Studying the projection properties of these designs allows the development of analysis methods to analyze these designs. Lastly the designs and projection properties of 9 to 14 factor NC designs onto three and four factors are presented. Certain recommendations are made on analysis methods for these designs as well.

Contributors

Agent

Created

Date Created
  • 2012

150659-Thumbnail Image.png

Product design optimization under epistemic uncertainty

Description

This dissertation is to address product design optimization including reliability-based design optimization (RBDO) and robust design with epistemic uncertainty. It is divided into four major components as outlined below. Firstly,

This dissertation is to address product design optimization including reliability-based design optimization (RBDO) and robust design with epistemic uncertainty. It is divided into four major components as outlined below. Firstly, a comprehensive study of uncertainties is performed, in which sources of uncertainty are listed, categorized and the impacts are discussed. Epistemic uncertainty is of interest, which is due to lack of knowledge and can be reduced by taking more observations. In particular, the strategies to address epistemic uncertainties due to implicit constraint function are discussed. Secondly, a sequential sampling strategy to improve RBDO under implicit constraint function is developed. In modern engineering design, an RBDO task is often performed by a computer simulation program, which can be treated as a black box, as its analytical function is implicit. An efficient sampling strategy on learning the probabilistic constraint function under the design optimization framework is presented. The method is a sequential experimentation around the approximate most probable point (MPP) at each step of optimization process. It is compared with the methods of MPP-based sampling, lifted surrogate function, and non-sequential random sampling. Thirdly, a particle splitting-based reliability analysis approach is developed in design optimization. In reliability analysis, traditional simulation methods such as Monte Carlo simulation may provide accurate results, but are often accompanied with high computational cost. To increase the efficiency, particle splitting is integrated into RBDO. It is an improvement of subset simulation with multiple particles to enhance the diversity and stability of simulation samples. This method is further extended to address problems with multiple probabilistic constraints and compared with the MPP-based methods. Finally, a reliability-based robust design optimization (RBRDO) framework is provided to integrate the consideration of design reliability and design robustness simultaneously. The quality loss objective in robust design, considered together with the production cost in RBDO, are used formulate a multi-objective optimization problem. With the epistemic uncertainty from implicit performance function, the sequential sampling strategy is extended to RBRDO, and a combined metamodel is proposed to tackle both controllable variables and uncontrollable variables. The solution is a Pareto frontier, compared with a single optimal solution in RBDO.

Contributors

Agent

Created

Date Created
  • 2012

149476-Thumbnail Image.png

Mixture-process variable design experiments with control and noise variables within a split-plot structure

Description

In mixture-process variable experiments, it is common that the number of runs is greater than in mixture-only or process-variable experiments. These experiments have to estimate the parameters from the mixture

In mixture-process variable experiments, it is common that the number of runs is greater than in mixture-only or process-variable experiments. These experiments have to estimate the parameters from the mixture components, process variables, and interactions of both variables. In some of these experiments there are variables that are hard to change or cannot be controlled under normal operating conditions. These situations often prohibit a complete randomization for the experimental runs due to practical and economical considerations. Furthermore, the process variables can be categorized into two types: variables that are controllable and directly affect the response, and variables that are uncontrollable and primarily affect the variability of the response. These uncontrollable variables are called noise factors and assumed controllable in a laboratory environment for the purpose of conducting experiments. The model containing both noise variables and control factors can be used to determine factor settings for the control factor that makes the response "robust" to the variability transmitted from the noise factors. These types of experiments can be analyzed in a model for the mean response and a model for the slope of the response within a split-plot structure. When considering the experimental designs, low prediction variances for the mean and slope model are desirable. The methods for the mixture-process variable designs with noise variables considering a restricted randomization are demonstrated and some mixture-process variable designs that are robust to the coefficients of interaction with noise variables are evaluated using fraction design space plots with the respect to the prediction variance properties. Finally, the G-optimal design that minimizes the maximum prediction variance over the entire design region is created using a genetic algorithm.

Contributors

Agent

Created

Date Created
  • 2010

149475-Thumbnail Image.png

Profile monitoring-- control chart schemes for monitoring linear and low order polynomial profiles

Description

The emergence of new technologies as well as a fresh look at analyzing existing processes have given rise to a new type of response characteristic, known as a profile. Profiles

The emergence of new technologies as well as a fresh look at analyzing existing processes have given rise to a new type of response characteristic, known as a profile. Profiles are useful when a quality variable is functionally dependent on one or more explanatory, or independent, variables. So, instead of observing a single measurement on each unit or product a set of values is obtained over a range which, when plotted, takes the shape of a curve. Traditional multivariate monitoring schemes are inadequate for monitoring profiles due to high dimensionality and poor use of the information stored in functional form leading to very large variance-covariance matrices. Profile monitoring has become an important area of study in statistical process control and is being actively addressed by researchers across the globe. This research explores the understanding of the area in three parts. A comparative analysis is conducted of two linear profile-monitoring techniques based on probability of false alarm rate and average run length (ARL) under shifts in the model parameters. The two techniques studied are control chart based on classical calibration statistic and a control chart based on the parameters of a linear model. The research demonstrates that a profile characterized by a parametric model is more efficient monitoring scheme than one based on monitoring only the individual features of the profile. A likelihood ratio based changepoint control chart is proposed for detecting a sustained step shift in low order polynomial profiles. The test statistic is plotted on a Shewhart like chart with control limits derived from asymptotic distribution theory. The statistic is factored to reflect the variation due to the parameters in to aid in interpreting an out of control signal. The research also looks at the robust parameter design study of profiles, also referred to as signal response systems. Such experiments are often necessary for understanding and reducing the common cause variation in systems. A split-plot approach is proposed to analyze the profiles. It is demonstrated that an explicit modeling of variance components using generalized linear mixed models approach has more precise point estimates and tighter confidence intervals.

Contributors

Agent

Created

Date Created
  • 2010

154099-Thumbnail Image.png

A probabilistic framework of transfer learning- theory and application

Description

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in

Transfer learning refers to statistical machine learning methods that integrate the knowledge of one domain (source domain) and the data of another domain (target domain) in an appropriate way, in order to develop a model for the target domain that is better than a model using the data of the target domain alone. Transfer learning emerged because classic machine learning, when used to model different domains, has to take on one of two mechanical approaches. That is, it will either assume the data distributions of the different domains to be the same and thereby developing one model that fits all, or develop one model for each domain independently. Transfer learning, on the other hand, aims to mitigate the limitations of the two approaches by accounting for both the similarity and specificity of related domains. The objective of my dissertation research is to develop new transfer learning methods and demonstrate the utility of the methods in real-world applications. Specifically, in my methodological development, I focus on two different transfer learning scenarios: spatial transfer learning across different domains and temporal transfer learning along time in the same domain. Furthermore, I apply the proposed spatial transfer learning approach to modeling of degenerate biological systems.Degeneracy is a well-known characteristic, widely-existing in many biological systems, and contributes to the heterogeneity, complexity, and robustness of biological systems. In particular, I study the application of one degenerate biological system which is to use transcription factor (TF) binding sites to predict gene expression across multiple cell lines. Also, I apply the proposed temporal transfer learning approach to change detection of dynamic network data. Change detection is a classic research area in Statistical Process Control (SPC), but change detection in network data has been limited studied. I integrate the temporal transfer learning method called the Network State Space Model (NSSM) and SPC and formulate the problem of change detection from dynamic networks into a covariance monitoring problem. I demonstrate the performance of the NSSM in change detection of dynamic social networks.

Contributors

Agent

Created

Date Created
  • 2015

154080-Thumbnail Image.png

Bayesian D-optimal design issues and optimal design construction methods for generalized linear models with random blocks

Description

Optimal experimental design for generalized linear models is often done using a pseudo-Bayesian approach that integrates the design criterion across a prior distribution on the parameter values. This approach

Optimal experimental design for generalized linear models is often done using a pseudo-Bayesian approach that integrates the design criterion across a prior distribution on the parameter values. This approach ignores the lack of utility of certain models contained in the prior, and a case is demonstrated where the heavy focus on such hopeless models results in a design with poor performance and with wild swings in coverage probabilities for Wald-type confidence intervals. Design construction using a utility-based approach is shown to result in much more stable coverage probabilities in the area of greatest concern.

The pseudo-Bayesian approach can be applied to the problem of optimal design construction under dependent observations. Often, correlation between observations exists due to restrictions on randomization. Several techniques for optimal design construction are proposed in the case of the conditional response distribution being a natural exponential family member but with a normally distributed block effect . The reviewed pseudo-Bayesian approach is compared to an approach based on substituting the marginal likelihood with the joint likelihood and an approach based on projections of the score function (often called quasi-likelihood). These approaches are compared for several models with normal, Poisson, and binomial conditional response distributions via the true determinant of the expected Fisher information matrix where the dispersion of the random blocks is considered a nuisance parameter. A case study using the developed methods is performed.

The joint and quasi-likelihood methods are then extended to address the case when the magnitude of random block dispersion is of concern. Again, a simulation study over several models is performed, followed by a case study when the conditional response distribution is a Poisson distribution.

Contributors

Agent

Created

Date Created
  • 2015

154115-Thumbnail Image.png

Optimal design of experiments for functional responses

Description

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response.

Functional or dynamic responses are prevalent in experiments in the fields of engineering, medicine, and the sciences, but proposals for optimal designs are still sparse for this type of response. Experiments with dynamic responses result in multiple responses taken over a spectrum variable, so the design matrix for a dynamic response have more complicated structures. In the literature, the optimal design problem for some functional responses has been solved using genetic algorithm (GA) and approximate design methods. The goal of this dissertation is to develop fast computer algorithms for calculating exact D-optimal designs.

First, we demonstrated how the traditional exchange methods could be improved to generate a computationally efficient algorithm for finding G-optimal designs. The proposed two-stage algorithm, which is called the cCEA, uses a clustering-based approach to restrict the set of possible candidates for PEA, and then improves the G-efficiency using CEA.

The second major contribution of this dissertation is the development of fast algorithms for constructing D-optimal designs that determine the optimal sequence of stimuli in fMRI studies. The update formula for the determinant of the information matrix was improved by exploiting the sparseness of the information matrix, leading to faster computation times. The proposed algorithm outperforms genetic algorithm with respect to computational efficiency and D-efficiency.

The third contribution is a study of optimal experimental designs for more general functional response models. First, the B-spline system is proposed to be used as the non-parametric smoother of response function and an algorithm is developed to determine D-optimal sampling points of a spectrum variable. Second, we proposed a two-step algorithm for finding the optimal design for both sampling points and experimental settings. In the first step, the matrix of experimental settings is held fixed while the algorithm optimizes the determinant of the information matrix for a mixed effects model to find the optimal sampling times. In the second step, the optimal sampling times obtained from the first step is held fixed while the algorithm iterates on the information matrix to find the optimal experimental settings. The designs constructed by this approach yield superior performance over other designs found in literature.

Contributors

Agent

Created

Date Created
  • 2015