Matching Items (23)

127866-Thumbnail Image.png

New Logistical Issues in Using Electric Vehicle Fleets with Battery Exchange Infrastructure

Description

There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels that are more sustainable. The electric vehicle (EV)

There is much reason to believe that fleets of service vehicles of many organizations will transform their vehicles that utilize alternative fuels that are more sustainable. The electric vehicle (EV) is a good candidate for this transformation, especially which “refuels” by exchanging its spent batteries with charged ones. This paper discusses some new logistical issues that must be addressed by such EV fleets, principally the issues related to the limited driving range of each EV's set of charged batteries and the possible detouring for battery exchanges. In particular, the paper addresses (1) the routing and scheduling of the fleet, (2) the locations of battery-exchange stations, and (3) the sizing of each facility. An overview of the literature on the topic is provided and some initial results are presented.

Contributors

Agent

Created

Date Created
  • 2014-02-18

148169-Thumbnail Image.png

Economic Analysis of Expenditure for Covid-19

Description

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different

This thesis was conducted to study and analyze the fund allocation process adopted by different states in the United States to reduce the impact of the Covid-19 virus. Seven different states and their funding methodologies were compared against the case count within the state. The study also focused on development of a physical distancing index based on three significant attributes. This index was then compared to the expenditure and case counts to support decision making.<br/>A regression model was developed to analyze and compare how different states case counts played out against the regression model and the risk index.

Contributors

Created

Date Created
  • 2021-05

158093-Thumbnail Image.png

Embedded Feature Selection for Model-based Clustering

Description

Model-based clustering is a sub-field of statistical modeling and machine learning. The mixture models use the probability to describe the degree of the data point belonging to the cluster, and

Model-based clustering is a sub-field of statistical modeling and machine learning. The mixture models use the probability to describe the degree of the data point belonging to the cluster, and the probability is updated iteratively during the clustering. While mixture models have demonstrated the superior performance in handling noisy data in many fields, there exist some challenges for high dimensional dataset. It is noted that among a large number of features, some may not indeed contribute to delineate the cluster profiles. The inclusion of these “noisy” features will confuse the model to identify the real structure of the clusters and cost more computational time. Recognizing the issue, in this dissertation, I propose a new feature selection algorithm for continuous dataset first and then extend to mixed datatype. Finally, I conduct uncertainty quantification for the feature selection results as the third topic.

The first topic is an embedded feature selection algorithm termed Expectation-Selection-Maximization (ESM) model that can automatically select features while optimizing the parameters for Gaussian Mixture Model. I introduce a relevancy index (RI) revealing the contribution of the feature in the clustering process to assist feature selection. I demonstrate the efficacy of the ESM by studying two synthetic datasets, four benchmark datasets, and an Alzheimer’s Disease dataset.

The second topic focuses on extending the application of ESM algorithm to handle mixed datatypes. The Gaussian mixture model is generalized to Generalized Model of Mixture (GMoM), which can not only handle continuous features, but also binary and nominal features.

The last topic is about Uncertainty Quantification (UQ) of the feature selection. A new algorithm termed ESOM is proposed, which takes the variance information into consideration while conducting feature selection. Also, a set of outliers are generated in the feature selection process to infer the uncertainty in the input data. Finally, the selected features and detected outlier instances are evaluated by visualization comparison.

Contributors

Agent

Created

Date Created
  • 2020

152033-Thumbnail Image.png

An agent-based optimization framework for engineered complex adaptive systems with application to demand response in electricity markets

Description

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer

The main objective of this research is to develop an integrated method to study emergent behavior and consequences of evolution and adaptation in engineered complex adaptive systems (ECASs). A multi-layer conceptual framework and modeling approach including behavioral and structural aspects is provided to describe the structure of a class of engineered complex systems and predict their future adaptive patterns. The approach allows the examination of complexity in the structure and the behavior of components as a result of their connections and in relation to their environment. This research describes and uses the major differences of natural complex adaptive systems (CASs) with artificial/engineered CASs to build a framework and platform for ECAS. While this framework focuses on the critical factors of an engineered system, it also enables one to synthetically employ engineering and mathematical models to analyze and measure complexity in such systems. In this way concepts of complex systems science are adapted to management science and system of systems engineering. In particular an integrated consumer-based optimization and agent-based modeling (ABM) platform is presented that enables managers to predict and partially control patterns of behaviors in ECASs. Demonstrated on the U.S. electricity markets, ABM is integrated with normative and subjective decision behavior recommended by the U.S. Department of Energy (DOE) and Federal Energy Regulatory Commission (FERC). The approach integrates social networks, social science, complexity theory, and diffusion theory. Furthermore, it has unique and significant contribution in exploring and representing concrete managerial insights for ECASs and offering new optimized actions and modeling paradigms in agent-based simulation.

Contributors

Agent

Created

Date Created
  • 2013

156337-Thumbnail Image.png

Data-Driven Robust Optimization in Healthcare Applications

Description

Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical

Healthcare operations have enjoyed reduced costs, improved patient safety, and

innovation in healthcare policy over a huge variety of applications by tackling prob-

lems via the creation and optimization of descriptive mathematical models to guide

decision-making. Despite these accomplishments, models are stylized representations

of real-world applications, reliant on accurate estimations from historical data to jus-

tify their underlying assumptions. To protect against unreliable estimations which

can adversely affect the decisions generated from applications dependent on fully-

realized models, techniques that are robust against misspecications are utilized while

still making use of incoming data for learning. Hence, new robust techniques are ap-

plied that (1) allow for the decision-maker to express a spectrum of pessimism against

model uncertainties while (2) still utilizing incoming data for learning. Two main ap-

plications are investigated with respect to these goals, the first being a percentile

optimization technique with respect to a multi-class queueing system for application

in hospital Emergency Departments. The second studies the use of robust forecasting

techniques in improving developing countries’ vaccine supply chains via (1) an inno-

vative outside of cold chain policy and (2) a district-managed approach to inventory

control. Both of these research application areas utilize data-driven approaches that

feature learning and pessimism-controlled robustness.

Contributors

Agent

Created

Date Created
  • 2018

151341-Thumbnail Image.png

Spatio-temporal data mining to detect changes and clusters in trajectories

Description

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis

With the rapid development of mobile sensing technologies like GPS, RFID, sensors in smartphones, etc., capturing position data in the form of trajectories has become easy. Moving object trajectory analysis is a growing area of interest these days owing to its applications in various domains such as marketing, security, traffic monitoring and management, etc. To better understand movement behaviors from the raw mobility data, this doctoral work provides analytic models for analyzing trajectory data. As a first contribution, a model is developed to detect changes in trajectories with time. If the taxis moving in a city are viewed as sensors that provide real time information of the traffic in the city, a change in these trajectories with time can reveal that the road network has changed. To detect changes, trajectories are modeled with a Hidden Markov Model (HMM). A modified training algorithm, for parameter estimation in HMM, called m-BaumWelch, is used to develop likelihood estimates under assumed changes and used to detect changes in trajectory data with time. Data from vehicles are used to test the method for change detection. Secondly, sequential pattern mining is used to develop a model to detect changes in frequent patterns occurring in trajectory data. The aim is to answer two questions: Are the frequent patterns still frequent in the new data? If they are frequent, has the time interval distribution in the pattern changed? Two different approaches are considered for change detection, frequency-based approach and distribution-based approach. The methods are illustrated with vehicle trajectory data. Finally, a model is developed for clustering and outlier detection in semantic trajectories. A challenge with clustering semantic trajectories is that both numeric and categorical attributes are present. Another problem to be addressed while clustering is that trajectories can be of different lengths and also have missing values. A tree-based ensemble is used to address these problems. The approach is extended to outlier detection in semantic trajectories.

Contributors

Agent

Created

Date Created
  • 2012

157832-Thumbnail Image.png

Congestion mitigation for planned special events: parking, ridesharing and network configuration

Description

This dissertation investigates congestion mitigation during the ingress of a planned special event (PSE). PSEs would impact the regular operation of the transportation system within certain time periods due to

This dissertation investigates congestion mitigation during the ingress of a planned special event (PSE). PSEs would impact the regular operation of the transportation system within certain time periods due to increased travel demand or reduced capacities on certain road segments. For individual attendees, cruising for parking during a PSE could be a struggle given the severe congestion and scarcity of parking spaces in the network. With the development of smartphones-based ridesharing services such as Uber/Lyft, more and more attendees are turning to ridesharing rather than driving by themselves. This study explores congestion mitigation during a planned special event considering parking, ridesharing and network configuration from both attendees and planner’s perspectives.

Parking availability (occupancy of parking facility) information is the fundamental building block for both travelers and planners to make parking-related decisions. It is highly valued by travelers and is one of the most important inputs to many parking models. This dissertation proposes a model-based practical framework to predict future occupancy from historical occupancy data alone. The framework consists of two modules: estimation of model parameters, and occupancy prediction. At the core of the predictive framework, a queuing model is employed to describe the stochastic occupancy change of a parking facility.

From an attendee’s perspective, the probability of finding parking at a particular parking facility is more treasured than occupancy information for parking search. However, it is hard to estimate parking probabilities even with accurate occupancy data in a dynamic environment. In the second part of this dissertation, taking one step further, the idea of introducing learning algorithms into parking guidance and information systems that employ a central server is investigated, in order to provide estimated optimal parking searching strategies to travelers. With the help of the Markov Decision Process (MDP), the parking searching process on a network with uncertain parking availabilities can be modeled and analyzed.

Finally, from a planner’s perspective, a bi-level model is proposed to generate a comprehensive PSE traffic management plan considering parking, ridesharing and route recommendations at the same time. The upper level is an optimization model aiming to minimize total travel time experienced by travelers. In the lower level, a link transmission model incorporating parking and ridesharing is used to evaluate decisions from and provide feedback to the upper level. A congestion relief algorithm is proposed and tested on a real-world network.

Contributors

Agent

Created

Date Created
  • 2019

158602-Thumbnail Image.png

Modeling Cascading Network Disruptions under Uncertainty For Managing Hurricane Evacuation

Description

Short-notice disasters such as hurricanes involve uncertainties in many facets, from the time of its occurrence to its impacts’ magnitude. Failure to incorporate these uncertainties can affect the effectiveness of

Short-notice disasters such as hurricanes involve uncertainties in many facets, from the time of its occurrence to its impacts’ magnitude. Failure to incorporate these uncertainties can affect the effectiveness of the emergency responses. In the case of a hurricane event, uncertainties and corresponding impacts during a storm event can quickly cascade. Over the past decades, various storm forecast models have been developed to predict the storm uncertainties; however, access to the usage of these models is limited. Hence, as the first part of this research, a data-driven simulation model is developed with aim to generate spatial-temporal storm predicted hazards for each possible hurricane track modeled. The simulation model identifies a means to represent uncertainty in storm’s movement and its associated potential hazards in the form of probabilistic scenarios tree where each branch is associated with scenario-level storm track and weather profile. Storm hazards, such as strong winds, torrential rain, and storm surges, can inflict significant damage on the road network and affect the population’s ability to move during the storm event. A cascading network failure algorithm is introduced in the second part of the research. The algorithm takes the scenario-level storm hazards to predict uncertainties in mobility states over the storm event. In the third part of the research, a methodology is proposed to generate a sequence of actions that simultaneously solve the evacuation flow scheduling and suggested routes which minimize the total flow time, or the makespan, for the evacuation process from origins to destinations in the resulting stochastic time-dependent network. The methodology is implemented for the 2017 Hurricane Irma case study to recommend an evacuation policy for Manatee County, FL. The results are compared with evacuation plans for assumed scenarios; the research suggests that evacuation recommendations that are based on single scenarios reduce the effectiveness of the evacuation procedure. The overall contributions of the research presented here are new methodologies to: (1) predict and visualize the spatial-temporal impacts of an oncoming storm event, (2) predict uncertainties in the impacts to transportation infrastructure and mobility, and (3) determine the quickest evacuation schedule and routes under the uncertainties within the resulting stochastic transportation networks.

Contributors

Agent

Created

Date Created
  • 2020

158541-Thumbnail Image.png

Queueing Network Models for Performance Evaluation of Dynamic Multi-Product Manufacturing Systems

Description

Modern manufacturing systems are part of a complex supply chain where customer preferences are constantly evolving. The rapidly evolving market demands manufacturing organizations to be increasingly agile and flexible. Medium

Modern manufacturing systems are part of a complex supply chain where customer preferences are constantly evolving. The rapidly evolving market demands manufacturing organizations to be increasingly agile and flexible. Medium term capacity planning for manufacturing systems employ queueing network models based on stationary demand assumptions. However, these stationary demand assumptions are not very practical for rapidly evolving supply chains. Nonstationary demand processes provide a reasonable framework to capture the time-varying nature of modern markets. The analysis of queues and queueing networks with time-varying parameters is mathematically intractable. In this dissertation, heuristics which draw upon existing steady state queueing results are proposed to provide computationally efficient approximations for dynamic multi-product manufacturing systems modeled as time-varying queueing networks with multiple customer classes (product types). This dissertation addresses the problem of performance evaluation of such manufacturing systems.

This dissertation considers the two key aspects of dynamic multi-product manufacturing systems - namely, performance evaluation and optimal server resource allocation. First, the performance evaluation of systems with infinite queueing room and a first-come first-serve service paradigm is considered. Second, systems with finite queueing room and priorities between product types are considered. Finally, the optimal server allocation problem is addressed in the context of dynamic multi-product manufacturing systems. The performance estimates developed in the earlier part of the dissertation are leveraged in a simulated annealing algorithm framework to obtain server resource allocations.

Contributors

Agent

Created

Date Created
  • 2020

158577-Thumbnail Image.png

Structural Decomposition Methods for Sparse Large-Scale Optimization

Description

This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization

This dissertation focuses on three large-scale optimization problems and devising algorithms to solve them. In addition to the societal impact of each problem’s solution, this dissertation contributes to the optimization literature a set of decomposition algorithms for problems whose optimal solution is sparse. These algorithms exploit problem-specific properties and use tailored strategies based on iterative refinement (outer-approximations). The proposed algorithms are not rooted in duality theory, providing an alternative to existing methods based on linear programming relaxations. However, it is possible to embed existing decomposition methods into the proposed framework. These general decomposition principles extend to other combinatorial optimization problems.

The first problem is a route assignment and scheduling problem in which a set of vehicles need to traverse a directed network while maintaining a minimum inter-vehicle distance at any time. This problem is inspired by applications in hazmat logistics and the coordination of autonomous agents. The proposed approach includes realistic features such as continuous-time vehicle scheduling, heterogeneous speeds, minimum and maximum waiting times at any node, among others.

The second problem is a fixed-charge network design, which aims to find a minimum-cost plan to transport a target amount of a commodity between known origins and destinations. In addition to the typical flow decisions, the model chooses the capacity of each arc and selects sources and sinks. The proposed algorithms admit any nondecreasing piecewise linear cost structure. This model is applied to the Carbon Capture and Storage (CCS) problem, which is to design a minimum-cost pipeline network to transport CO2 between industrial sources and geologic reservoirs for long-term storage.

The third problem extends the proposed decomposition framework to a special case of joint chance constraint programming with independent random variables. This model is applied to the probabilistic transportation problem, where demands are assumed stochastic and independent. Using an empirical probability distribution, this problem is formulated as an integer program with the goal of finding a minimum-cost distribution plan that satisfies all the demands with a minimum given probability. The proposed scalable algorithm is based on a concave envelop approximation of the empirical probability function, which is iteratively refined as needed.

Contributors

Agent

Created

Date Created
  • 2020