Matching Items (35)
151711-Thumbnail Image.png
Description
Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations

Cyanovirin-N (CV-N) is a naturally occurring lectin originally isolated from the cyanobacteria Nostoc ellipsosporum. This 11 kDa lectin is 101 amino acids long with two binding sites, one at each end of the protein. CV-N specifically binds to terminal Manα1-2Manα motifs on the branched, high mannose Man9 and Man8 glycosylations found on enveloped viruses including Ebola, Influenza, and HIV. wt-CVN has micromolar binding to soluble Manα1-2Manα and also inhibits HIV entry at low nanomolar concentrations. CV-N's high affinity and specificity for Manα1-2Manα makes it an excellent lectin to study for its glycan-specific properties. The long-term aim of this project is to make a variety of mutant CV-Ns to specifically bind other glycan targets. Such a set of lectins may be used as screening reagents to identify biomarkers and other glycan motifs of interest. As proof of concept, a T7 phage display library was constructed using P51G-m4-CVN genes mutated at positions 41, 44, 52, 53, 56, 74, and 76 in binding Domain B. Five CV-N mutants were selected from the library and expressed in BL21(DE3) E. coli. Two of the mutants, SSDGLQQ-P51Gm4-CVN and AAGRLSK-P51Gm4-CVN, were sufficiently stable for characterization and were examined by CD, Tm, ELISA, and glycan array. Both proteins have CD minima at approximately 213 nm, indicating largely β-sheet structure, and have Tm values greater than 40°C. ELISA against gp120 and RNase B demonstrate both proteins' ability to bind high mannose glycans. To more specifically determine the binding specificity of each protein, AAGRLSK-P51Gm4-CVN, SSDGLQQ-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN were sent to the Consortium for Functional Glycomics (CFG) for glycan array analysis. AAGRLSK-P51Gm4-CVN, wt-CVN, and P51G-m4-CVN, have identical specificities for high mannose glycans containing terminal Manα1-2Manα. SSDGLQQ-P51Gm4-CVN binds to terminal GlcNAcα1-4Gal motifs and a subgroup of high mannose glycans bound by P51G-m4-CVN. SSDGLQQ-wt-CVN was produced to restore anti-HIV activity and has a high nanomolar EC50 value compared to wt-CVN's low nanomolar activity. Overall, these experiments show that CV-N Domain B can be mutated and retain specificity identical to wt-CVN or acquire new glycan specificities. This first generation information can be used to produce glycan-specific lectins for a variety of applications.
ContributorsRuben, Melissa (Author) / Ghirlanda, Giovanna (Thesis advisor) / Allen, James (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2013
151376-Thumbnail Image.png
Description
Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in the loss of lower body muscle function. SMA is the second leading genetic cause of death in infants and arises from the loss of the Survival of Motor Neuron (SMN) protein. SMN is produced by two genes, smn1 and

Spinal muscular atrophy (SMA) is a neurodegenerative disease that results in the loss of lower body muscle function. SMA is the second leading genetic cause of death in infants and arises from the loss of the Survival of Motor Neuron (SMN) protein. SMN is produced by two genes, smn1 and smn2, that are identical with the exception of a C to T conversion in exon 7 of the smn2 gene. SMA patients lacking the smn1 gene, rely on smn2 for production of SMN. Due to an alternative splicing event, smn2 primarily encodes a non-functional SMN lacking exon 7 (SMN D7) as well as a low amount of functional full-length SMN (SMN WT). SMN WT is ubiquitously expressed in all cell types, and it remains unclear how low levels of SMN WT in motor neurons lead to motor neuron degradation and SMA. SMN and its associated proteins, Gemin2-8 and Unrip, make up a large dynamic complex that functions to assemble ribonucleoproteins. The aim of this project was to characterize the interactions of the core SMN-Gemin2 complex, and to identify differences between SMN WT and SMN D7. SMN and Gemin2 proteins were expressed, purified and characterized via size exclusion chromatography. A stable N-terminal deleted Gemin2 protein (N45-G2) was characterized. The SMN WT expression system was optimized resulting in a 10-fold increase of protein expression. Lastly, the oligomeric states of SMN and SMN bound to Gemin2 were determined. SMN WT formed a mixture of oligomeric states, while SMN D7 did not. Both SMN WT and D7 bound to Gemin2 with a one-to-one ratio forming a heterodimer and several higher-order oligomeric states. The SMN WT-Gemin2 complex favored high molecular weight oligomers whereas the SMN D7-Gemin2 complex formed low molecular weight oligomers. These results indicate that the SMA mutant protein, SMN D7, was still able to associate with Gemin2, but was not able to form higher-order oligomeric complexes. The observed multiple oligomerization states of SMN and SMN bound to Gemin2 may play a crucial role in regulating one or several functions of the SMN protein. The inability of SMN D7 to form higher-order oligomers may inhibit or alter those functions leading to the SMA disease phenotype.
ContributorsNiday, Tracy (Author) / Allen, James P. (Thesis advisor) / Wachter, Rebekka (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2012
152304-Thumbnail Image.png
Description
X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular

X-ray diffraction is the technique of choice to determine the three-dimensional structures of proteins. In this study it has been applied to solve the structure of the survival motor neuron (SMN) proteins, the Fenna-Mathews-Olson (FMO) from Pelodictyon phaeum (Pld. phaeum) protein, and the synthetic ATP binding protein DX. Spinal muscular atrophy (SMA) is an autosomal recessive genetic disease resulting in muscle atrophy and paralysis via degeneration of motor neurons in the spinal cord. In this work, we used X-ray diffraction technique to solve the structures of the three variant of the of SMN protein, namely SMN 1-4, SMN-WT, and SMN-Δ7. The SMN 1-4, SMN-WT, and SMN-Δ7 crystals were diffracted to 2.7 Å, 5.5 Å and 3.0 Å, respectively. The three-dimensional structures of the three SMN proteins have been solved. The FMO protein from Pld. phaeum is a water soluble protein that is embedded in the cytoplasmic membrane and serves as an energy transfer funnel between the chlorosome and the reaction center. The FMO crystal diffracted to 1.99Å resolution and the three-dimensional structure has been solved. In previous studies, double mutant, DX, protein was purified and crystallized in the presence of ATP (Simmons et al., 2010; Smith et al. 2007). DX is a synthetic ATP binding protein which resulting from a random selection of DNA library. In this study, DX protein was purified and crystallized without the presence of ATP to investigate the conformational change in DX structure. The crystals of DX were diffracted to 2.5 Å and the three-dimensional structure of DX has been solved.
ContributorsSeng, Chenda O (Author) / Allen, James P. (Thesis advisor) / Wachter, Rebekka (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2013
152384-Thumbnail Image.png
Description
Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general.

Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general. In this work, thionation of GOs has been achieved in high yield through two new methods that also allow concomitant chemical reduction/thermal reduction of GOs; a solid-gas metathetical reaction method with boron sulfides (BxSy) gases and a solvothermal reaction method employing phosphorus decasulfide (P4S10). The thionation products, called "mercapto reduced graphene oxides (m-RGOs)", were characterized by employing X-ray photoelectron spectroscopy, powder X-ray diffraction, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, electron probe analysis, scanning electron microscopy, (scanning) transmission electron microscopy, nano secondary ion mass spectrometry, Ellman assay and atomic force microscopy. The excellent dispersibility of m-RGOs in various solvents including alcohols has allowed fabrication of thin films of m-RGOs. Deposition of m-RGOs on gold substrates was achieved through solution deposition and the m-RGOs were homogeneously distributed on gold surface shown by atomic force microscopy. Langmuir-Blodgett (LB) films of m-RGOs were obtained by transferring their Langmuir films, formed by simple drop casting of m-RGOs dispersion on water surface, onto various substrates including gold, glass and indium tin oxide. The m-RGO LB films showed low sheet resistances down to about 500 kΩ/sq at 92% optical transparency. The successful results make m-RGOs promising for applications in transparent conductive coatings, biosensing, etc.
ContributorsJeon, Kiwan (Author) / Seo, Dong-Kyun (Thesis advisor) / Jones, Anne K (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2013
152944-Thumbnail Image.png
Description
Protein affinity reagents have aptly gained profound importance as capture reagents and

drugs in basic research, biotechnology, diagnostics and therapeutics. However, due to the

cost, labor and time associated with production of antibodies focus has recently changed

towards potential of peptides to act as protein affinity reagents.

Protein affinity reagents have aptly gained profound importance as capture reagents and

drugs in basic research, biotechnology, diagnostics and therapeutics. However, due to the

cost, labor and time associated with production of antibodies focus has recently changed

towards potential of peptides to act as protein affinity reagents. Affinity peptides are easy

to work with, non-immunogenic, cost effective and amenable to scale up. Even though

researchers have developed several affinity peptides, we are far from compiling library of

peptides that encompasses entire human proteome. My thesis describes high throughput

pipeline that can be used to develop and characterize affinity peptides that bind several

discrete sites on target proteins.

Chapter 2 describes optimization of cell-free protein expression using commercially

available translation systems and well-known leader sequences. Presence of internal

ribosome entry site upstream of coding region allows maximal expression in HeLa cell

lysate whereas translation enhancing elements are best suited for expression in rabbit

reticulocyte lysate and wheat germ extract. Use of optimal vector and cell lysate

combination ensures maximum protein expression of DNA libraries.

Chapter 3 describes mRNA display selection methodology for developing affinity peptides

for target proteins using large diversity DNA libraries. I demonstrate that mild denaturant

is not sufficient to increase selection pressure for up to three rounds of selection and

increasing number of selection rounds increases probability of finding affinity peptide s.

These studies enhance fundamental understanding of mRNA display and pave the way

for future optimizations to accelerate convergence of in vitro selections.

Chapter 4 describes a high throughput double membrane dot blot system to rapidly

screen, identify and characterize affinity peptides obtained from selection output. I used

dot blot to screen potential affinity peptides from large diversity of previously

ii

uncharacterized mRNA display selection output. Further characterization of potential

peptides allowed determination of several high affinity peptides from having Kd range 150-

450 nM. Double membrane dot blot is automation amenable, easy and affordable solution

for analyzing selection output and characterizing peptides without ne ed for much

instrumentation.

Together these projects serve as guideline for evolution of cost effective high throughput

pipeline for identification and characterization of affinity peptides.
ContributorsShah, Pankti (Author) / Chaput, John (Thesis advisor) / Hecht, Sidney (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2014
153458-Thumbnail Image.png
Description
Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the

Biophysical techniques have been increasingly applied toward answering biological questions with more precision. Here, three different biological systems were studied with the goal of understanding their dynamic differences, either conformational dynamics within the system or oligomerization dynamics between monomers. With Cy3 on the 5' end of DNA, the effects of changing the terminal base pair were explored using temperature-dependent quantum yields. It was discovered, in combination with simulations, that a terminal thymine base has the weakest stacking interactions with the Cy3 dye compared to the other three bases. With ME1 heterodimers, the goal was to see if engineering a salt bridge at the dimerization interface could allow for control over dimerization in a pH-dependent manner. This was performed experimentally by measuring FRET between monomers containing either a Dap or an Asp mutation and comparing FRET efficiency at different pHs. It was demonstrated that the heterodimeric salt bridge would only form in a pH range near neutrality. Finally, with DNA processivity clamps, one aim was to compare the equilibrium dissociation constants, kinetic rate constants, and lifetimes of the closed rings for beta clamp and PCNA. This was done using a variety of biophysical techniques but with three as the main focus: fluorescence correlation spectroscopy, single-molecule experiments, and time-correlated single photon counting measurements. The stability of beta clamp was found to be three orders of magnitude higher when measuring solution stability but only one order of magnitude higher when measuring intrinsic stability, which is a result of salt bridge interactions in the interface of beta clamp. Ongoing work built upon the findings from this project by attempting to disrupt interface stability of different beta clamp mutants by adding salt or changing the pH of the solution. Lingering questions about the dynamics of different areas of the clamps has led to another project for which we have developed a control to demystify some unexpected similarities between beta clamp mutants. With that project, we show that single-labeled and double-labeled samples have similar autocorrelation decays in florescence correlation spectroscopy, allowing us to rule out the dyes themselves as causing fluctuations in the 10-100 microsecond timescale.
ContributorsBinder, Jennifer (Author) / Levitus, Marcia (Thesis advisor) / Wachter, Rebekka (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2015
153341-Thumbnail Image.png
Description
Geopolymers, a class of X-ray amorphous, ceramic-like aluminosilicate materials are produced at ambient temperatures through a process called geopolymerization. Due to both low energy requirement during synthesis and interesting mechanical and chemical properties, geopolymers are grabbing enormous attention. Although geopolymers have a broad range of applications including thermal/acoustic

Geopolymers, a class of X-ray amorphous, ceramic-like aluminosilicate materials are produced at ambient temperatures through a process called geopolymerization. Due to both low energy requirement during synthesis and interesting mechanical and chemical properties, geopolymers are grabbing enormous attention. Although geopolymers have a broad range of applications including thermal/acoustic insulation and waste immobilization, they are always prepared in monolithic form. The primary aim of this study is to produce new nanostructured materials from the geopolymerization process, including porous monoliths and powders.

In view of the current interest in porous geopolymers for non-traditional applications, it is becoming increasingly important to develop synthetic techniques to introduce interconnected pores into the geopolymers. This study presents a simple synthetic route to produce hierarchically porous geopolymers via a reactive emulsion templating process utilizing triglyceride oil. In this new method, highly alkaline geopolymer resin is mixed with canola oil to form a homogeneous viscous emulsion which, when cured at 60 °C, gives a hard monolithic material. During the process, the oil in the alkaline emulsion undergoes a saponification reaction to decompose into water-soluble soap and glycerol molecules which are extracted to yield porous geopolymers. Nitrogen sorption studies indicates the presence of mesopores, whereas the SEM studies reveals that the mesoporous geopolymer matrix is dotted with spherical macropores. The method exhibits flexibility in that the pore structure of the final porous geopolymers products can be adjusted by varying the precursor composition.

In a second method, the geopolymerization process is modified to produce highly dispersible geopolymer particles, by activating metakaolin with sodium silicate solutions containing excess alkali, and curing for short duration under moist conditions. The produced geopolymer particles exhibit morphology similar to carbon blacks and structured silicas, while also being stable over a wide pH range.

Finally, highly crystalline hierarchical faujasite zeolites are prepared by yet another modification of the geopolymerization process. In this technique, the second method is combined with a saponification reaction of triglyceride oil. The resulting hierarchical zeolites exhibit superior CO2-sorption properties compared to equivalent commercially available and currently reported materials. Additionally, the simplicity of all three of these techniques means they are readily scalable.
ContributorsMedpelli, Dinesh (Author) / Seo, Dong-Kyun (Thesis advisor) / Herckes, Pierre (Committee member) / Petuskey, William (Committee member) / Arizona State University (Publisher)
Created2015
153026-Thumbnail Image.png
Description
The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics

The AAA+ ATPase Rubisco activase (Rca) regulates the activity of Rubisco, the photosynthetic enzyme responsible for catalyzing biological carbon fixation. However, the detailed mechanism by which Rca self-association controls Rubisco reactivation activity remains poorly understood. In this work, we are using fluorescence correlation spectroscopy (FCS) to better characterize the thermodynamics of the assembly process of cotton Rca. We present FCS data for Rca in the presence of Mg*ATPgS and Mg*ADP and for the D173N Walker B motif mutant in the presence of Mg*ATP. Our data are consistent with promotion and stabilization of hexamers by Mg*ATPgS and Mg*ATP, whereas Mg*ADP facilitates continuous assembly. We find that in the presence of Mg·ADP, Rca self-associates in a step-wise fashion to form oligomeric and higher order forms, with a strong size dependence on subunit concentration. The monomer is the dominant species below 0.5 micromolar, whereas the hexamer appears to be most populated in the 10-30 micromolar range. Large assemblies containing on the order of 24 subunits become dominant above 40 micromolar, with continued assembly at even higher concentrations. Our data are consistent with a highly dynamic exchange of subunits among oligomeric species of diverse sizes. The most likely ADP-mediated assembly mechanism seems to involve the formation of spiral supra-molecular structures that grow along the helical axis by the step-wise addition of dimeric units. To examine the effect of Mg·ATP on oligomerization, we have generated the D173N mutant of Rca, which binds but does not hydrolyze ATP. In range of 8 and 70 micromolar, 60-80% of Rca is predicted to form hexamers in the presence of Mg*ATP compared to just 30-40% with Mg*ADP. We see a clear trend at which hexamerization occurs at high ATP:ADP ratios and in addition, at increasing concentrations of free magnesium ions to 5 milimolar that results in formation of six subunits. We present an assembly model where Mg*ATP promotes and stabilizes hexamerization at low micromolar Rca concentrations relative to Mg*ADP, and suggest that this results from closed ring hexamer formation in Mg*ATP and open hexameric spiral formation in Mg*ADP .
ContributorsKuriata, Agnieszka (Author) / Wachter, Rebekka (Thesis advisor) / Redding, Kevin (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2014
153179-Thumbnail Image.png
Description
This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of

This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy.

Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC.

Battery testing based on [EMI+][FeCl4-] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4+][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements.

Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121oC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.
ContributorsTucker, Telpriore G (Author) / Angell, Charles A. (Committee member) / Moore, Ana (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2014
153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015