Matching Items (2,700)
Filtering by

Clear all filters

151790-Thumbnail Image.png
Description
In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to

In 2007, Arizona voters passed House Bill (HB) 2064, a law that fundamentally restructured the Structured English Immersion (SEI) program, putting into place a 4-hour English language development (ELD) block for educating English language learners (ELLs). Under this new language policy, ELL students are segregated from their English-speaking peers to receive a minimum of four hours of instruction in discrete language skills with no contextual or native language support. Furthermore, ELD is separate from content-area instruction, meaning that language and mathematics are taught as two separate entities. While educators and researchers have begun to examine the organizational structure of the 4-hour block curriculum and implications for student learning, there is much to be understood about the extent to which this policy impacts ELLs opportunities to learn mathematics. Using ethnographic methods, this dissertation documents the beliefs and practices of four Arizona teachers in an effort to understand the relationship between language policy and teacher beliefs and practice and how together they coalesce to form learning environments for their ELL students, particularly in mathematics. The findings suggest that the 4-hour block created disparities in opportunities to learn mathematics for students in one Arizona district, depending on teachers' beliefs and the manner in which the policy was enacted, which was, in part, influenced by the State, district, and school. The contrast in cases exemplified the ways in which policy, which was enacted differently in the various classes, restricted teachers' practices, and in some cases resulted in inequitable opportunities to learn mathematics for ELLs.
ContributorsLlamas-Flores, Silvia (Author) / Middleton, James (Thesis advisor) / Battey, Daniel (Committee member) / Sloane, Finbarr (Committee member) / Macswan, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2013
151409-Thumbnail Image.png
Description
Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions

Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions of relevant and the way they believe relevant math should be implemented in the classroom, leads one to conclude that a similarly varied set of perspectives probably exists between teachers and students as well. The purpose of this exploratory study focuses on how the student and teacher perspectives on relevant mathematics in the classroom converge or diverge. Specifically, do teachers and students see the same lessons, materials, content, and approach as relevant? A survey was conducted with mathematics teachers at a suburban high school and their algebra 1 and geometry students to provide a general idea of their views on relevant mathematics. An analysis of the findings revealed three major differences: the discrepancy between frequency ratings of teachers and students, the differences between how teachers and students defined the term relevance and how the students' highest rated definitions were the least accounted for among the teacher generated questions, and finally the impact of differing attitudes towards mathematics on students' feelings towards its relevance.
ContributorsRedman, Alexandra P (Author) / Middleton, James (Thesis advisor) / Sloane, Finbarr (Committee member) / Blumenfeld-Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2012
Description
This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1)

This thesis seeks to further explore off-design point operation of gas turbines and to examine the capabilities of GasTurb 12 as a tool for off-design analysis. It is a continuation of previous thesis work which initially explored the capabilities of GasTurb 12. The research is conducted in order to: 1) validate GasTurb 12 and, 2) predict off-design performance of the Garrett GTCP85-98D located at the Arizona State University Tempe campus. GasTurb 12 is validated as an off-design point tool by using the program to predict performance of an LM2500+ marine gas turbine. Haglind and Elmegaard (2009) published a paper detailing a second off-design point method and it includes the manufacturer's off-design point data for the LM2500+. GasTurb 12 is used to predict off-design point performance of the LM2500+ and compared to the manufacturer's data. The GasTurb 12 predictions show good correlation. Garrett has published specification data for the GTCP85-98D. This specification data is analyzed to determine the design point and to comment on off-design trends. Arizona State University GTCP85-98D off-design experimental data is evaluated. Trends presented in the data are commented on and explained. The trends match the expected behavior demonstrated in the specification data for the same gas turbine system. It was originally intended that a model of the GTCP85-98D be constructed in GasTurb 12 and used to predict off-design performance. The prediction would be compared to collected experimental data. This is not possible because the free version of GasTurb 12 used in this research does not have a module to model a single spool turboshaft. This module needs to be purchased for this analysis.
ContributorsMartinjako, Jeremy (Author) / Trimble, Steve (Thesis advisor) / Dahm, Werner (Committee member) / Middleton, James (Committee member) / Arizona State University (Publisher)
Created2014
153542-Thumbnail Image.png
Description
Industry, academia, and government have spent tremendous amounts of money over several decades trying to improve the mathematical abilities of students. They have hoped that improvements in students' abilities will have an impact on adults' mathematical abilities in an increasingly technology-based workplace. This study was conducted to begin

Industry, academia, and government have spent tremendous amounts of money over several decades trying to improve the mathematical abilities of students. They have hoped that improvements in students' abilities will have an impact on adults' mathematical abilities in an increasingly technology-based workplace. This study was conducted to begin checking for these impacts. It examined how nine adults in their workplace solved problems that purportedly entailed proportional reasoning and supporting rational number concepts (cognates).

The research focused on four questions: a) in what ways do workers encounter and utilize the cognates while on the job; b) do workers engage cognate problems they encounter at work differently from similar cognate problems found in a textbook; c) what mathematical difficulties involving the cognates do workers experience while on the job, and; d) what tools, techniques, and social supports do workers use to augment or supplant their own abilities when confronted with difficulties involving the cognates.

Noteworthy findings included: a) individual workers encountered cognate problems at a rate of nearly four times per hour; b) all of the workers engaged the cognates primarily via discourse with others and not by written or electronic means; c) generally, workers had difficulty with units and solving problems involving intensive ratios; d) many workers regularly used a novel form of guess & check to produce a loose estimate as an answer; and e) workers relied on the social structure of the store to mitigate the impact and defuse the responsibility for any errors they made.

Based on the totality of the evidence, three hypotheses were discussed: a) the binomial aspect of a conjecture that stated employees were hired either with sufficient mathematical skills or with deficient skills was rejected; b) heuristics, tables, and stand-ins were maximally effective only if workers individually developed them after a need was recognized; and c) distributed cognition was rejected as an explanatory framework by arguing that the studied workers and their environment formed a system that was itself a heuristic on a grand scale.
ContributorsOrletsky, Darryl William (Author) / Middleton, James (Thesis advisor) / Greenes, Carole (Committee member) / Judson, Eugene (Committee member) / Arizona State University (Publisher)
Created2015