Matching Items (47)

128094-Thumbnail Image.png

Measuring Engineering Faculty Views about Benefits and Costs of Using Student-Centered Strategies

Description

Dispositions of 286 engineering faculty members were assessed to determine views about three student-centered classroom strategies and how frequently faculty used those strategies. The student-centered classroom strategies examined were: using

Dispositions of 286 engineering faculty members were assessed to determine views about three student-centered classroom strategies and how frequently faculty used those strategies. The student-centered classroom strategies examined were: using formative feedback to adjust instruction, integrating real-world applications, and promoting student-to-student discussions during formal class time. The Value, Expectancy, and Cost of Testing Educational Reforms Survey (VECTERS), based on expectancy theory, was designed, tested, and validated for this purpose. Results indicate using strategies, such as formative feedback, are significantly tied to perceived benefits and expectation of success. Using student-centered strategies is inversely related to the perceived cost of implementation – with more frequent users perceiving lower cost of time and materials.

Contributors

Agent

Created

Date Created
  • 2017-03-29

136687-Thumbnail Image.png

Innovative strategies used to teach mathematics: A look at educators and classrooms across six countries

Description

Mathematics is an increasingly critical subject and the achievement of students in mathematics has been the focus of many recent reports and studies. However, few studies exist that both observe

Mathematics is an increasingly critical subject and the achievement of students in mathematics has been the focus of many recent reports and studies. However, few studies exist that both observe and discuss the specific teaching and assessment techniques employed in the classrooms across multiple countries. The focus of this study is to look at classrooms and educators across six high achieving countries to identify and compare teaching strategies being used. In Finland, Hong Kong, Japan, New Zealand, Singapore, and Switzerland, twenty educators were interviewed and fourteen educators were observed teaching. Themes were first identified by comparing individual teacher responses within each country. These themes were then grouped together across countries and eight emerging patterns were identified. These strategies include students active involvement in the classroom, students given written feedback on assessments, students involvement in thoughtful discussion about mathematical concepts, students solving and explaining mathematics problems at the board, students exploring mathematical concepts either before or after being taught the material, students engagement in practical applications, students making connections between concepts, and students having confidence in their ability to understand mathematics. The strategies identified across these six high achieving countries can inform educators in their efforts of increasing student understanding of mathematical concepts and lead to an improvement in mathematics performance.

Contributors

Agent

Created

Date Created
  • 2014-12

134673-Thumbnail Image.png

Automatic Area Ruling of Aircraft Geometries

Description

This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an

This paper describes an aircraft design optimization tool for wave drag reduction. The tool synthesizes an aircraft wing and fuselage geometry using the Rhinoceros CAD program. It then implements an algorithm to perform area-ruling on the fuselage. The algorithm adjusts the cross-sectional area along the length of the fuselage, with the wing geometry fixed, to match a Sears-Haack distribution. Following the optimization of the area, the tool collects geometric data for analysis using legacy performance tools. This analysis revealed that performing the optimization yielded an average reduction in wave drag of 25% across a variety of Mach numbers on two different starting geometries. The goal of this project is to integrate this optimization tool into a larger trade study tool as it will allow for higher fidelity modeling as well as large improvements in transonic and supersonic drag performance.

Contributors

Agent

Created

Date Created
  • 2016-12

134675-Thumbnail Image.png

Analyzing the Achievement and Attitude of Students Using Concept Mapping in an Active Learning Classroom

Description

Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and

Concept mapping is a tool used in order to visually represent a person's understanding of interrelated concepts. Generally the central concept is in the center or at the top and the related concepts branch off, becoming more detailed as it continues. Additionally, links between different branches show how those concepts are related to each other. Concept mapping can be implemented in many different types of classrooms because it can be easily adjusted for the needs of the teacher and class specifically. The goal of this project is to analyze both the attitude and achievement of students using concept mapping of college students in an active learning classroom. In order to evaluate the students' concept maps we will use the expert map scoring method, which compares the students concept maps to an expertly created concept map for similarities; the more similar the two maps are, the higher the score. We will collect and record students' scores on concept maps as they continue through the one semester class. Certain chapters correspond to specific exams due to the information contained in the lectures, chapters 1-4 correspond to exam 1 and so forth. We will use this information to correlate the average concept map score across these chapters to one exam score. There was no significant correlation found between the exam grades and the corresponding scores on the concept maps (Pearson's R values of 0.27, 0.26, and -0.082 for Exam 1, 2 and 3 respectively). According to Holm et all "it was found that 85% of students found interest or attainment in the concept mapping session, only 44% thought there was a cost, and 63% thought it would help them to be successful."

Contributors

Agent

Created

Date Created
  • 2016-12

134301-Thumbnail Image.png

Leading Edge Geometry Effects on Pressure Drag and Pressure Thrust for Various Wing Geometries

Description

The purpose of this paper is to discover what geometric characteristics of a wing and airfoil help to maximize leading edge suction through experimental testing. Three different stages of testing

The purpose of this paper is to discover what geometric characteristics of a wing and airfoil help to maximize leading edge suction through experimental testing. Three different stages of testing were conducted: a Proof of Concept, a Primary Experiment, and a Secondary Experiment. The Proof of Concept shows the effects of leading edge suction and the benefits it can posses. The Primary Experiment provided inconclusive data due to inaccuracies in the equipment. As a result, the Secondary Experiment was conducted in order to reduce the error effect as much as possible on the data. Unfortunately the Secondary Experiment provided inaccurate data as well. However, this paper does provide enough evidence to begin to question some of the long held beliefs regarding theoretical induced drag and whether it is true under all circumstances, or if it is only a good approximation for airfoils with full leading-edge suction effects.

Contributors

Created

Date Created
  • 2017-05

134375-Thumbnail Image.png

Study of Exhaust Throttling Effects on SI Engine Performance

Description

To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation

To determine the effects of exhaust heat recovery systems on small engines, an experiment was performed to measure the power losses of an engine with restricted exhaust flow. In cooperation with ASU's SAE Formula race team, a water brake dynamometer was refurbished and connected to the 2017 racecar engine. The engine was mounted with a diffuser disc exhaust to restrict flow, and a pressure sensor was installed in the O2 port to measure pressure under different restrictions. During testing, problems with the equipment prevented suitable from being generated. Using failure root cause analysis, the failure modes were identified and plans were made to resolve those issues. While no useful data was generated, the project successfully rebuilt a dynamometer for students to use for future engine research.

Contributors

Agent

Created

Date Created
  • 2017-05

A Concept for Using Superformula and Information Theory to Identify and Prioritize Interesting Objects in Autonomous Exploration

Description

In order to refine autonomous exploratory movement planning schemes, an approach must be developed that accounts for valuable information other than that gained from map filling. To this end, the

In order to refine autonomous exploratory movement planning schemes, an approach must be developed that accounts for valuable information other than that gained from map filling. To this end, the goal of this thesis is divided into two parts. The first is to develop a technique for categorizing objects detected by an autonomous exploratory robot and assigning them a score based on their interest value. The second is an attempt to develop a method of integrating this technique into a navigation algorithm in order to refine the movements of a robot or robots to maximize the efficiency of information gain. The intention of both of these components is to provide a method of refining the navigation scheme applied to autonomous exploring robots and maximize the amount of information they can gather in deployments where they face significant resource or functionality constraints. To this end this project is divided into two main sections: a shape-matching technique and a simulation in in which to implement this technique. The first section was accomplished by combining concepts from information theory, principal component analysis, and the eigenfaces algorithm to create an effective matching technique. The second was created with inspiration from existing navigation algorithms. Once these components were determined to be functional, a testing regime was applied to determine their capabilities. The testing regime was also divided into two parts. The tests applied to the matching technique were first to demonstrate that it functions under ideal conditions. After testing was conducted under ideal conditions, the technique was tested under non-ideal conditions. Additional tests were run to determine how the system responded to changes in the coefficients and equations that govern its operation. Similarly, the simulation component was initially tested under normal conditions to determine the base effectiveness of the approach. After these tests were conducted, alternative conditions were tested to evaluate the effects of modifying the implementation technique. The results of these tests indicated a few things. The first series of tests confirmed that the matching technique functions as expected under ideal conditions. The second series of tests determined that the matching element is effective for a reasonable range of variations and non-ideal conditions. The third series of tests showed that changing the functional coefficients of the matching technique can help tune the technique to different conditions. The fourth series of tests demonstrated that the basic concept of the implementation technique makes sense. The final series of tests demonstrated that modifying the implementation method is at least somewhat effective and that modifications to it can be used to specifically tailor the implementation to a method. Overall the results indicate that the stated goals of the project were accomplished successfully.

Contributors

Agent

Created

Date Created
  • 2016-12

134771-Thumbnail Image.png

Planing and The Effect of Bicycle Frame Stiffness on Rider Performance

Description

It is a common assumption in the bicycle industry that stiffer frames generally perform better than flexible frames, because they transfer power more efficiently and absorb less energy from the

It is a common assumption in the bicycle industry that stiffer frames generally perform better than flexible frames, because they transfer power more efficiently and absorb less energy from the rider's pedal stroke in the form of spring potential energy. However, in the last few years, Jan Heine of Bicycle Quarterly has developed an alternative theory, which he calls "planing", whereby a flexible frame can improve rider performance by not resisting the leg muscles as much, preventing premature muscle fatigue and allowing the rider to actually produce more consistent power, an effect which overwhelms any difference in power transfer between the different stiffness levels of frames. I performed several tests in which I measured the power input to the bicycle through the crankset and power output through a power-measuring trainer in the place of the rear hub. Heart rate data was collected along with most of these tests. Four bicycles were used with three distinct levels of stiffness. After performing several ANOVA tests to determine the effect of stiffness on the parameters of average power output during a sprint, maximum power output during a sprint, maximum heart rate during a sprint, difference between power-in and power-out during both sprints and longer efforts, and power quotient during a sprint, I found no effects of frame stiffness on any of these factors except power quotient. The finding for power quotient suggests a positive relationship between quotient and stiffness, which directly refutes the Planing Theory for the test riders and levels of stiffness represented in this test. Also, no statistically significant effect of stiffness on the difference between power-in and power-out was found, refuting the Power Transfer Theory for the riders and levels of stiffness represented in this test.

Contributors

Created

Date Created
  • 2016-12

134643-Thumbnail Image.png

Convection Heat Transfer in Mineral Oil CPU Immersion Cooling

Description

In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics

In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics while also being thermally conductive and cooling the CPU. A simple comparison of a flat plate immersed in air versus mineral oil is considered using analytical natural convection correlations. The result of this comparison indicates that the plate cooled by natural convection in air would operate at 98.41[°C] while the plate cooled by mineral oil would operate at 32.20 [°C]. Next, CFD in ANSYS Fluent was used to conduct simulation with forced convection representing a CPU fan driving fluid flow to cool the CPU. A comparison is made between cooling done with air and mineral oil. The results of the CFD simulation results indicate that using mineral oil as a substitute to air as the cooling fluid reduced the CPU operating temperature by sixty degrees Celsius. The use of mineral oil as a cooling fluid for a consumer computer has valid thermal benefits, but the practical challenges of the method will likely prevent widespread adoption.

Contributors

Agent

Created

Date Created
  • 2016-12

134064-Thumbnail Image.png

Ionic Wind Propulsion

Description

This paper describes the research done to attempt to scale up thrusts produced by ionic wind thrusters, or "lifters" to magnitudes needed to power a 2 kg hobbyist remote-control airplane.

This paper describes the research done to attempt to scale up thrusts produced by ionic wind thrusters, or "lifters" to magnitudes needed to power a 2 kg hobbyist remote-control airplane. It includes background information on the Biefeld-Brown effect and the thrust it produces, an experiment that attempted to prove that thrust can be scaled up from smaller ionic wind thrusters to larger scales, and two models predicting thruster geometries and power sources needed to reach these thrusts. An ionic wind thruster could not be created that would power the hobbyist remote as a high-voltage power source with voltage and power high enough could not be obtained. Thrusters were created for the experiment using balsa wood, aluminum foil, and thin copper wire, and were powered using a 30 kV transformer. The thrusters attempted to test for correlations between thrust, electrode length, and current; electric field strength, and thrust; and thrust optimization through opening up air flow through the collector electrode. The experiment was inconclusive as all the thrusters failed to produce measurable thrust. Further experimentation suggests the chief failure mode is likely conduction from the collector electrode to the nearby large conductive surface of the scale.

Contributors

Agent

Created

Date Created
  • 2017-12