Matching Items (21)
Description

This paper outlines the issue of end-of-life management in small scale solar systems deployed generally in Sub-Saharan Africa, known as PAYGos (Pay-as-you-go). Research and interviews were conducted in order to determine the current state of the industry and plans in terms of waste management. Considering the current capabilities and technology

This paper outlines the issue of end-of-life management in small scale solar systems deployed generally in Sub-Saharan Africa, known as PAYGos (Pay-as-you-go). Research and interviews were conducted in order to determine the current state of the industry and plans in terms of waste management. Considering the current capabilities and technology of PV recycling, the future of the industry was analyzed. It is important to provide the highest quality of service to the customer and minimize issues with environmental hazards. Therefore, it is recommended here that PAYGo companies create contracts with recycling companies before the issue of solar waste increases drastically.

ContributorsDiehl, Phoebe (Author) / Kelman, Jonathan (Thesis director) / Moore, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05
187793-Thumbnail Image.png
Description
Exploration of long-range conductance in non-redox-active proteins at the single molecule scale is aided by the development of innovative, tailor-made quantitative data analysis techniques. This thesis details the rationale behind the proposed approaches, the steps taken to design and implement every method, and the validation of the methodologies using appropriate

Exploration of long-range conductance in non-redox-active proteins at the single molecule scale is aided by the development of innovative, tailor-made quantitative data analysis techniques. This thesis details the rationale behind the proposed approaches, the steps taken to design and implement every method, and the validation of the methodologies using appropriate experiments, benchmarks, and rigorous statistical data analysis. The first chapter conducts a thorough literature review, sets the stage for the subsequent investigation, and underscores the importance of the research questions addressed in this thesis. The second chapter describes the solvent effects on the electronic conductance of a series of Consensus Tetratricopeptide Repeat proteins (CTPR) measured with Scanning Tunneling Microscopy (STM). The study reveals a reversible reduction in electronic conductance when water (H2O) is replaced with heavy water (D2O) due to a ~6-fold decrease in the carrier diffusion constant as proteins become solvated by D2O. Similar observations are made in a ~7 nm long tryptophan zipper protein, while a phenylalanine zipper protein of comparable length remains unchanged in D2O, highlighting the critical role of aromatic residues in proteins lacking redox cofactors. As an extension to this finding, the third chapter describes the development of a machine-learning model to detect the presence of a protein and identify essential features helping in the detection. For this purpose, a solid-state device was engineered to measure the conductance of CTPR-16 protein wires. This approach addresses the limitations in characterizing the STM gap, enables the collection of stable current vs. time data, and provides a statistical understanding of the electronic transport through a protein. The final chapter investigates real-time changes in conductance in response to protein conformation alterations. A deoxyribonucleic acid (DNA) polymerase Φ29 was chosen for its potential utility as a single-molecule DNA sequencing device. The modified enzyme was bound to electrodes functionalized with streptavidin. Φ29 connected by one biotinylated contact and a second nonspecific contact showed rapid small fluctuations in current when activated. Signals were greatly enhanced with two specific contacts. Features in the distributions of conductance increased by a factor of 2 or more over the open-to-closed conformational transition of the polymerase.
ContributorsMukherjee, Sohini (Author) / Lindsay, Stuart (Thesis advisor) / Moore, Thomas (Committee member) / Qing, Quan (Committee member) / Arizona State University (Publisher)
Created2023
154210-Thumbnail Image.png
Description
This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured

This thesis develops molecular models for electron transport in molecular junctions and intra-molecular electron transfer. The goal is to identify molecular descriptors that afford a substantial simplification of these electronic processes.

First, the connection between static molecular polarizability and the molecular conductance is examined. A correlation emerges whereby the measured conductance of a tunneling junction decreases as a function of the calculated molecular polarizability for several systems, a result consistent with the idea of a molecule as a polarizable dielectric. A model based on a macroscopic extension of the Clausius-Mossotti equation to the molecular domain and Simmon’s tunneling model is developed to explain this correlation. Despite the simplicity of the theory, it paves the way for further experimental, conceptual and theoretical developments in the use of molecular descriptors to describe both conductance and electron transfer.

Second, the conductance of several biologically relevant, weakly bonded, hydrogen-bonded systems is systematically investigated. While there is no correlation between hydrogen bond strength and conductance, the results indicate a relation between the conductance and atomic polarizability of the hydrogen bond acceptor atom. The relevance of these results to electron transfer in biological systems is discussed.

Hydrogen production and oxidation using catalysts inspired by hydrogenases provides a more sustainable alternative to the use of precious metals. To understand electrochemical and spectroscopic properties of a collection of Fe and Ni mimics of hydrogenases, high-level density functional theory calculations are described. The results, based on a detailed analysis of the energies, charges and molecular orbitals of these metal complexes, indicate the importance of geometric constraints imposed by the ligand on molecular properties such as acidity and electrocatalytic activity. Based on model calculations of several intermediates in the catalytic cycle of a model NiFe complex, a hypothetical reaction mechanism, which very well agrees with the observed experimental results, is proffered.

Future work related to this thesis may involve the systematic analysis of chemical reactivity in constrained geometries, a subject of importance if the context of enzymatic activity. Another, more intriguing direction is related to the fundamental issue of reformulating Marcus theory in terms of the molecular dielectric response function.
ContributorsKhezr Seddigh Mazinani, Shobeir (Author) / Mujica, Vladimiro (Thesis advisor) / Pilarisetty, Tarakeshwar (Committee member) / Angell, Charles A (Committee member) / Jones, Anne K (Committee member) / Arizona State University (Publisher)
Created2015
ContributorsMoore, Thomas (Arranger)
ContributorsMoore, Thomas (Performer) / ASU Library. Music Library (Publisher)
Created2000-10-13
ContributorsMoore, Thomas (Composer) / Chavez, Jesse (Arranger)
129517-Thumbnail Image.png
Description

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies,

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF4·OEt2, triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO]+ that can be reversibly converted back to 1 by deprotonation using NEt3. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)+ susceptible to external CO binding.

ContributorsRoy, Souvik (Author) / Mazinani, Shobeir Khezr Seddigh (Author) / Groy, Thomas (Author) / Gan, Lu (Author) / Pilarisetty, Tarakeshwar (Author) / Mujica, Vladimiro (Author) / Jones, Anne (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01
129515-Thumbnail Image.png
Description

The dopamine-TiO2 system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key role of the molecule–nanoparticle interface in the electronic structure by means of ab initio modeling. The dopamine adsorption energy on anatase

The dopamine-TiO2 system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key role of the molecule–nanoparticle interface in the electronic structure by means of ab initio modeling. The dopamine adsorption energy on anatase surfaces is computed and related to changes in the electronic structure. Two features are observed: the appearance of a state in the material band gap, and charge transfer between molecule and surface upon electronic excitation. The analysis of the energetics of the systems would point to a selective adsorption of dopamine on the (001) and (100) terminations, with much less affinity for the (101) plane.

ContributorsUrdaneta, I. (Author) / Keller, A. (Author) / Atabek, O. (Author) / Palma, Julio (Author) / Finkelstein-Shapiro, Daniel (Author) / Pilarisetty, Tarakeshwar (Author) / Mujica, Vladimiro (Author) / Calatayud, M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-04
130434-Thumbnail Image.png
Description
The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information, yet sometimes the usefulness of these calculations can be limited because of the computational requirements for large systems. Methodologies that

The ability to accurately predict the oxidation and reduction potentials of molecules is very useful in various fields and applications. Quantum mechanical calculations can be used to access this information, yet sometimes the usefulness of these calculations can be limited because of the computational requirements for large systems. Methodologies that yield strong linear correlations between calculations and experimental data have been reported, however the balance between accuracy and computational cost is always a major issue. In this work, linear correlations (with an R-2 value of up to 0.9990) between DFT-calculated HOMO/LUMO energies and 70 redox potentials from a series of 51 polycyclic aromatic hydrocarbons (obtained from the literature) are presented. The results are compared to previously reported linear correlations that were obtained with a more expensive computational methodology based on a Born-Haber thermodynamic cycle. It is shown in this article that similar or better correlations can be obtained with a simple and cheaper calculation.
Created2013-10-28