Matching Items (17)
Filtering by

Clear all filters

152104-Thumbnail Image.png
Description
Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as

Developing a system capable of using solar energy to drive the conversion of an abundant and available precursor to fuel would profoundly impact humanity's energy use and thereby the condition of the global ecosystem. Such is the goal of artificial photosynthesis: to convert water to hydrogen using solar radiation as the sole energy input and ideally do so with the use of low cost, abundant materials. Constructing photoelectrochemical cells incorporating photoanodes structurally reminiscent of those used in dye sensitized photovoltaic solar cells presents one approach to establishing an artificial photosynthetic system. The work presented herein describes the production, integration, and study of water oxidation catalysts, molecular dyes, and metal oxide based photoelectrodes carried out in the pursuit of developing solar water splitting systems.
ContributorsSherman, Benjamin D (Author) / Moore, Thomas (Thesis advisor) / Moore, Ana (Committee member) / Buttry, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
152159-Thumbnail Image.png
Description
[FeFe]-hydrogenases are enzymes for the reduction of protons to hydrogen. They rely on only the earth abundant first-row transition metal iron at their active site (H cluster). In recent years, a multitude of diiron mimics of hydrogenases have been synthesized, but none of them catalyzes hydrogen production with the same

[FeFe]-hydrogenases are enzymes for the reduction of protons to hydrogen. They rely on only the earth abundant first-row transition metal iron at their active site (H cluster). In recent years, a multitude of diiron mimics of hydrogenases have been synthesized, but none of them catalyzes hydrogen production with the same exquisite combination of high turnover frequency and low activation energy as the enzymes. Generally, model complexes fail to include one or both of two features essential to the natural enzyme: an intricate array of outer coordination sphere contacts that constrain the coordination geometry to attain a catalytically optimal conformation, and the redox non-innocence of accessory [FeS] clusters found at or near the hydrogen-activating site. The work presented herein describes the synthesis and electrocatalytic characterization of iron-dithiolate models designed to incorporate these features. First, synthetic strategies are developed for constructing peptides with artificial metal-binding motifs, such as 1,3-dithiolate and phosphines, which are utilized to append diiron-polycarbonyl clusters onto a peptide. The phosphine-functionalized peptides are shown to be better electrocatalysts for proton reduction in water/acetonitrile mixtures than in neat acetonitrile. Second, we report the impact of redox non-innocent ligands on the electrocatalytic properties of two types of [FeFe]-hydrogenase models: dinuclear and mononuclear iron complexes. The bidentate, redox non-innocent α-diimine ligands (N-N), 2,2'-bipyridine and 2,2' bipyrimidine, are used to create complexes with the general formula (μ-SRS)Fe2(CO)4(N-N), new members of the well known family of asymmetric diiron carbonyls. While the 2,2'-bipyridine derivatives can act as electrocatalysts for proton reduction, surprisingly, the 2,2'-bipyrimidine analogues are found to be inactive towards catalysis. Electrochemical investigation of two related Fe(II) complexes, (bdt)Fe(CO)P2 for bdt = benzene-1,2-dithiolate and P2 = 1,1'-diphenylphosphinoferrocene or methyl-2-{bis(diphenylphosphinomethylamino}acetate, related to the distal iron in [FeFe]-hydrogenase show that these complexes catalyze the reduction of protons under mild conditions. However, their reactivities toward the external ligand CO are distinguished by gross geometrical differences.
ContributorsRoy, Souvik (Author) / Jones, Anne K (Thesis advisor) / Moore, Thomas (Committee member) / Trovitch, Ryan (Committee member) / Arizona State University (Publisher)
Created2013
152988-Thumbnail Image.png
Description
A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere

A vast amount of energy emanates from the sun, and at the distance of Earth, approximately 172,500 TW reaches the atmosphere. Of that, 80,600 TW reaches the surface with 15,600 TW falling on land. Photosynthesis converts 156 TW in the form of biomass, which represents all food/fuel for the biosphere with about 20 TW of the total product used by humans. Additionally, our society uses approximately 20 more TW of energy from ancient photosynthetic products i.e. fossil fuels. In order to mitigate climate problems, the carbon dioxide must be removed from the human energy usage by replacement or recycling as an energy carrier. Proposals have been made to process biomass into biofuels; this work demonstrates that current efficiencies of natural photosynthesis are inadequate for this purpose, the effects of fossil fuel replacement with biofuels is ecologically irresponsible, and new technologies are required to operate at sufficient efficiencies to utilize artificial solar-to-fuels systems. Herein a hybrid bioderived self-assembling hydrogen-evolving nanoparticle consisting of photosystem I (PSI) and platinum nanoclusters is demonstrated to operate with an overall efficiency of 6%, which exceeds that of land plants by more than an order of magnitude. The system was limited by the rate of electron donation to photooxidized PSI. Further work investigated the interactions of natural donor acceptor pairs of cytochrome c6 and PSI for the thermophilic cyanobacteria Thermosynechococcus elogantus BP1 and the red alga Galderia sulphuraria. The cyanobacterial system is typified by collisional control while the algal system demonstrates a population of prebound PSI-cytochrome c6 complexes with faster electron transfer rates. Combining the stability of cyanobacterial PSI and kinetics of the algal PSI:cytochrome would result in more efficient solar-to-fuel conversion. A second priority is the replacement of platinum with chemically abundant catalysts. In this work, protein scaffolds are employed using host-guest strategies to increase the stability of proton reduction catalysts and enhance the turnover number without the oxygen sensitivity of hydrogenases. Finally, design of unnatural electron transfer proteins are explored and may introduce a bioorthogonal method of introducing alternative electron transfer pathways in vitro or in vivo in the case of engineered photosynthetic organisms.
ContributorsVaughn, Michael David (Author) / Moore, Thomas (Thesis advisor) / Fromme, Petra (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2014
153102-Thumbnail Image.png
Description
Redox reactions are crucial to energy transduction in biology. Protein film electrochemistry (PFE) is a technique for studying redox proteins in which the protein is immobilized at an electrode surface so as to allow direct exchange of electrons. Establishing a direct electronic connection eliminates the need for redox­active mediators, thus

Redox reactions are crucial to energy transduction in biology. Protein film electrochemistry (PFE) is a technique for studying redox proteins in which the protein is immobilized at an electrode surface so as to allow direct exchange of electrons. Establishing a direct electronic connection eliminates the need for redox­active mediators, thus allowing for interrogation of the redox protein of interest. PFE has proven a versatile tool that has been used to elucidate the properties of many technologically relevant redox proteins including hydrogenases, laccases, and glucose oxidase.

This dissertation is comprised of two parts: extension of PFE to a novel electrode material and application of PFE to the investigation of a new type of hydrogenase. In the first part, mesoporous antimony-doped tin oxide (ATO) is employed for the first time as an electrode material for protein film electrochemistry. Taking advantage of the excellent optical transparency of ATO, spectroelectrochemistry of cytochrome c is demonstrated. The electrochemical and spectroscopic properties of the protein are analogous to those measured for the native protein in solution, and the immobilized protein is stable for weeks at high loadings. In the second part, PFE is used to characterize the catalytic properties of the soluble hydrogenase I from Pyrococcus furiosus (PfSHI). Since this protein is highly thermostable, the temperature dependence of catalytic properties was investigated. I show that the preference of the enzyme for reduction of protons (as opposed to oxidation of hydrogen) and the reactions with oxygen are highly dependent on temperature, and the enzyme is tolerant to oxygen during both oxidative and reductive catalysis.
ContributorsKwan, Patrick Karchung (Author) / Jones, Anne K (Thesis advisor) / Francisco, Wilson (Committee member) / Moore, Thomas (Committee member) / Arizona State University (Publisher)
Created2014
150123-Thumbnail Image.png
Description
Natural photosynthesis features a complex biophysical/chemical process that requires sunlight to produce energy rich products. It is one of the most important processes responsible for the appearance and sustainability of life on earth. The first part of the thesis focuses on understanding the mechanisms involved in regulation of light harvesting,

Natural photosynthesis features a complex biophysical/chemical process that requires sunlight to produce energy rich products. It is one of the most important processes responsible for the appearance and sustainability of life on earth. The first part of the thesis focuses on understanding the mechanisms involved in regulation of light harvesting, which is necessary to balance the absorption and utilization of light energy and in that way reduce the effect caused by photooxidative damage. In photosynthesis, carotenoids are responsible not only for collection of light, but also play a major role in protecting the photosynthetic system. To investigate the role of carotenoids in the quenching of the excited state of cyclic tetrapyrroles, two sets of dyads were studied. Both sets of dyads contain zinc phthalocyanine (Pc) covalently attached to carotenoids of varying conjugation lengths. In the first set of dyads, carotenoids were attached to the phthalocyanine via amide linkage. This set of dyads serves as a good model for understanding the molecular "gear-shift" mechanism, where the addition of one double bond can turn the carotenoid from a nonquencher to a very strong quencher of the excited state of a tetrapyrrole. In the second set of dyads, carotenoids were attached to phthalocyanine via a phenyl amino group. Two independent studies were performed on these dyads: femtosecond transient absorption and steady state fluorescence induced by two-photon excitation. In the transient absorption study it was observed that there is an instantaneous population of the carotenoid S1 state after Pc excitation, while two-photon excitation of the optically forbidden carotenoid S1 state shows 1Pc population. Both observations provide a strong indication of the existence of a shared excitonic state between carotenoid and Pc. Similar results were observed in LHC II complexes in plants, supporting the role of such interactions in photosynthetic down regulation. In the second chapter we describe the synthesis of porphyrin dyes functionalized with carboxylate and phosphonate anchoring groups to be used in the construction of photoelectrochemical cells containing a porphyrin-IrO2·nH2O complex immobilized on a TiO2 electrode. The research presented here is a step in the development of high potential porphyrin-metal oxide complexes to be used in the photooxidation of water. The last chapter focuses on developing synthetic strategies for the construction of an artificial antenna system consisting of porphyrin-silver nanoparticle conjugates, linked by DNA of varied length to study the distance dependence of the interaction between nanoparticles and the porphyrin chromophore. Preliminary studies indicate that at the distance of about 7-10 nm between porphyrin and silver nanoparticle is where the porphyrin absorption leading to fluorescence shows maximum enhancement. These new hybrid constructs will be helpful for designing efficient light harvesting systems.
ContributorsPillai, Smitha (Author) / Moore, Ana (Thesis advisor) / Moore, Thomas (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2011
150657-Thumbnail Image.png
Description
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is widely accepted as the world's most abundant enzyme and represents the primary entry point for inorganic carbon into the biosphere. Rubisco's slow carboxylation rate of ribulose-1,5-bisphosphate (RuBP) and its susceptibility to inhibition has led some to term it the "bottle neck" of photosynthesis. In order to

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is widely accepted as the world's most abundant enzyme and represents the primary entry point for inorganic carbon into the biosphere. Rubisco's slow carboxylation rate of ribulose-1,5-bisphosphate (RuBP) and its susceptibility to inhibition has led some to term it the "bottle neck" of photosynthesis. In order to ensure that Rubisco remains uninhibited, plants require the catalytic chaperone Rubisco activase. Activase is a member of the AAA+ superfamily, ATPases associated with various cellular activities, and uses ATP hydrolysis as the driving force behind a conformational movement that returns activity to inhibited Rubisco active sites. A high resolution activase structure will be an essential tool for examining Rubisco/activase interactions as well as understanding the activase self-association phenomenon. Rubisco activase has long eluded crystallization, likely due to its infamous self-association (polydispersity). Therefore, a limited proteolysis approach was taken to identify soluble activase subdomains as potential crystallization targets. This process involves using proteolytic enzymes to cleave a protein into a few pieces and has previously proven successful in identifying crystallizable protein fragments. Limited proteolysis, utilizing two different proteolytic enzymes (alpha-chymotrypsin and trypsin), identified two tobacco activase products. The fragments that were identified appear to represent most of what is considered to be the AAA+ C-terminal all alpha-domain and some of the AAA+ N-terminal alpha beta alpha-domain. Identified fragments were cloned using the pET151/dTOPO. The project then moved towards cloning and recombinant protein expression in E. coli. NtAbeta(248-383) and NtAbeta(253-354) were successfully cloned, expressed, purified, and characterized through various biophysical techniques. A thermofluor assay of NtAbeta(248-383) revealed a melting temperature of about 30°C, indicating lower thermal stability compared with full-length activase at 43°C. Size exclusion chromatography suggested that NtAbeta(248-383) is monomeric. Circular dichroism was used to identify the secondary structure; a plurality of alpha-helices. NtAbeta(248-383) and NtAbeta(253-354) were subjected to crystallization trials.
ContributorsConrad, Alan (Author) / Wachter, Rebekka (Thesis advisor) / Moore, Thomas (Committee member) / Redding, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
136921-Thumbnail Image.png
Description
Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest

Photosynthesis is a critical process that fixes the carbon utilized in cellular respiration. In higher plants, the immutans gene codes for a protein that is both involved in carotenoid biosynthesis and plastoquinol oxidation (Carol et al 1999, Josse et al 2003). This plastoquinol terminal oxidase (PTOX) is of great interest in understanding electron flow in the plastoquinol pool. In order to characterize this PTOX, polyclonal antibodies were developed. Expression of Synechococcus WH8102 PTOX in E. coli provided a useful means to harvest the protein required for antibody production. Once developed, the antibody was tested for limit of concentration, effectiveness in whole cell lysate, and overall specificity. The antibody raised against PTOX was able to detect as low as 10 pg of PTOX in SDS-PAGE, and could detect PTOX extracted from lysed Synechococcus WH8102. The production of this antibody could determine the localization of the PTOX in Synechococcus.
ContributorsKhan, Mohammad Iqbal (Author) / Moore, Thomas (Thesis director) / Redding, Kevin (Committee member) / Roberson, Robert (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2014-05
133783-Thumbnail Image.png
Description
Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often synthesized to define structure-function relationships and optimize catalysis. However, this process can also lead to drastic and unpredictable changes in

Industrial interest in electrocatalytic production of hydrogen has stimulated considerable research in understanding hydrogenases, the biological catalysts for proton reduction, and related synthetic mimics. Structurally closely related complexes are often synthesized to define structure-function relationships and optimize catalysis. However, this process can also lead to drastic and unpredictable changes in the catalytic behavior. In this paper, we use density functional theory calculations to identify changes in the electronic structure of [Ni(bdt)(dppf)] (bdt = 1,2-benzenedithiolate, dppf = 1,1ʹ-bis(diphenylphosphino)ferrocene) relative to [Ni(tdt)(dppf)] (tdt = toluene-3,4-dithiol) as a means to explain the substantially reduced electrocatalytic activity of the tdt complex. An increased likelihood of protonation at the sulfur sites of the tdt complex relative to the Ni is revealed. This decreased propensity of metal protonation may lead to less efficient metal-hydride production and subsequently catalysis.
ContributorsHerringer, Nicholas Stephen (Author) / Jones, Anne (Thesis director) / Mujica, Vladimiro (Committee member) / Pilarisetty, Tarakeshwar (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
155663-Thumbnail Image.png
Description
Development of efficient and renewable electrocatalytic systems is foundational to creation of effective means to produce solar fuels. Many redox enzymes are functional electrocatalysts when immobilized on an electrode, but long-term stability of isolated proteins limits use in applications. Thus there is interest in developing bio-inspired functional catalysts or electrocatalytic

Development of efficient and renewable electrocatalytic systems is foundational to creation of effective means to produce solar fuels. Many redox enzymes are functional electrocatalysts when immobilized on an electrode, but long-term stability of isolated proteins limits use in applications. Thus there is interest in developing bio-inspired functional catalysts or electrocatalytic systems based on living organisms. This dissertation describes efforts to create both synthetic and biological electrochemical systems for electrocatalytic hydrogen production.

The first part of this dissertation describes the preparation of three different types of proton reduction catalysts. First, four bioinspired diiron complexes of the form (μ-SRS)Fe(CO)3[Fe(CO)(N-N)] for SRS = 1,2-benzenedithiolate (bdt) and 1,3-propanedithiolate (pdt) and N-N = 2,2’-bipyridine (bpy) and 2,2’-bypyrimidine (bpym), are described. Electrocatatlytic experiments show that although the byprimidinal complexes are not catalysts, the bipyridyl complexes produce hydrogen from acetic acid under reducing conditions. Second, three new mononuclear FeII carbonyl complexes of the form [Fe(CO)(bdt)(PPh2)2] in which P2 = bis-phosphine: 4,5-Bis(diphenylphosphino)- 9,9-dimethylxanthene (Xantphos), 1,2-Bis(diphenylphosphino)benzene (dppb), or cis- 1,2-Bis(diphenylphosphino)ethylene (dppv) are described. All are functional bio-inspired models of the distal Fe site of [FeFe]-hydrogenases. Of these, the Xanthphos complex is the most stable to redox reactions and active as an electrocatalyst. Third, a molybdenum catalyst based on the redox non-innocent PDI ligand framework is also shown to produce hydrogen in the presence of acid.

The second part of this dissertation describes creating functional interfaces between chemical and biological models at electrode surfaces to create electroactive systems. First, covalent tethering of the redox probe ferrocene to thiol-functionalized reduced graphene oxide is demonstrated. I demonstrate that this attachment is via the thiol functional groups. Second, I demonstrate the ability to use electricity in combination with light to drive production of hydrogen by the anaerobic, phototrophic microorganism Heliobacterium modesticaldum.
ContributorsLaureanti, Joseph Anthony (Author) / Jones, Anne K. (Thesis advisor) / Moore, Thomas (Committee member) / Redding, Kevin E. (Committee member) / Arizona State University (Publisher)
Created2017
149434-Thumbnail Image.png
Description
This dissertation describes work on three projects concerning the design and implementation of instrumentation used to study potential organic electronic devices. The first section describes the conducting atomic force microscope (CAFM) in the study of the mechanical and electronic interactions between DNA bases and nucleosides. Previous STM data suggested that

This dissertation describes work on three projects concerning the design and implementation of instrumentation used to study potential organic electronic devices. The first section describes the conducting atomic force microscope (CAFM) in the study of the mechanical and electronic interactions between DNA bases and nucleosides. Previous STM data suggested that an STM tip could recognize single base pairs through an electronic interaction after a functionalized tip made contact with a self assembled monolayer then was retracted. The conducting AFM was employed in order to understand the mechanical interactions of such a system and how they were affecting electrical responses. The results from the conducting AFM showed that the scanning probe system was measuring multiple base-pair interactions, and thus did not have single base resolution. Further, results showed that the conductance between a single base-nucleoside pair is below the detection limit of a potential commercial sequencing device. The second section describes the modifications of a scanning probe microscope in order to study the conductance of single organic molecules under illumination. Modifications to the scanning probe microscope are described as are the control and data analysis software for an experiment testing the single molecule conductance of an organic molecule under illumination. This instrument was then tested using a novel charge-separation molecule, which is being considered for its potential photovoltaic properties. The experiments showed that the instrumentation is capable of detecting differences in conductance upon laser illumination of the molecule on a transparent conductive surface. The third section describes measurements using the illuminated CAFM, as well as the design and construction of an illuminated mercury drop electrode apparatus. Both instruments were tested by attempting to observe photovoltaic behavior in a novel self-organized film of the charge-separation molecules mentioned in the previous paragraph. Results and calculations show that the conducting AFM is not a useful tool in the examination of these organic photovoltaics, while the mercury drop apparatus measured photovoltaic effects in the film. Although photovoltaic effects were measurable with the mercury drop electrode, it was found that the film exhibited very low photon-to-electron conversion efficiency (IPCE).
ContributorsKibel, Ashley Ann (Author) / Lindsay, Stuart M (Thesis advisor) / Chamberlin, Ralph (Committee member) / Moore, Thomas (Committee member) / Ozkan, Sefika (Committee member) / Sankey, Otto (Committee member) / Arizona State University (Publisher)
Created2010