Matching Items (2)
Filtering by

Clear all filters

129517-Thumbnail Image.png
Description

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies,

Two pentacoordinate mononuclear iron carbonyls of the form (bdt)Fe(CO)P2 [bdt = benzene-1,2-dithiolate; P2 = 1,1′-diphenylphosphinoferrocene (1) or methyl-2-{bis(diphenylphosphinomethyl)amino}acetate (2)] were prepared as functional, biomimetic models for the distal iron (Fed) of the active site of [FeFe]-hydrogenase. X-ray crystal structures of the complexes reveal that, despite similar ν(CO) stretching band frequencies, the two complexes have different coordination geometries. In X-ray crystal structures, the iron center of 1 is in a distorted trigonal bipyramidal arrangement, and that of 2 is in a distorted square pyramidal geometry. Electrochemical investigation shows that both complexes catalyze electrochemical proton reduction from acetic acid at mild overpotential, 0.17 and 0.38 V for 1 and 2, respectively. Although coordinatively unsaturated, the complexes display only weak, reversible binding affinity toward CO (1 bar). However, ligand centered protonation by the strong acid, HBF4·OEt2, triggers quantitative CO uptake by 1 to form a dicarbonyl analogue [1(H)-CO]+ that can be reversibly converted back to 1 by deprotonation using NEt3. Both crystallographically determined distances within the bdt ligand and density functional theory calculations suggest that the iron centers in both 1 and 2 are partially reduced at the expense of partial oxidation of the bdt ligand. Ligand protonation interrupts this extensive electronic delocalization between the Fe and bdt making 1(H)+ susceptible to external CO binding.

ContributorsRoy, Souvik (Author) / Mazinani, Shobeir Khezr Seddigh (Author) / Groy, Thomas (Author) / Gan, Lu (Author) / Pilarisetty, Tarakeshwar (Author) / Mujica, Vladimiro (Author) / Jones, Anne (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-01
129515-Thumbnail Image.png
Description

The dopamine-TiO2 system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key role of the molecule–nanoparticle interface in the electronic structure by means of ab initio modeling. The dopamine adsorption energy on anatase

The dopamine-TiO2 system shows a specific spectroscopic response, surface enhanced Raman scattering (SERS), whose mechanism is not fully understood. In this study, the goal is to reveal the key role of the molecule–nanoparticle interface in the electronic structure by means of ab initio modeling. The dopamine adsorption energy on anatase surfaces is computed and related to changes in the electronic structure. Two features are observed: the appearance of a state in the material band gap, and charge transfer between molecule and surface upon electronic excitation. The analysis of the energetics of the systems would point to a selective adsorption of dopamine on the (001) and (100) terminations, with much less affinity for the (101) plane.

ContributorsUrdaneta, I. (Author) / Keller, A. (Author) / Atabek, O. (Author) / Palma, Julio (Author) / Finkelstein-Shapiro, Daniel (Author) / Pilarisetty, Tarakeshwar (Author) / Mujica, Vladimiro (Author) / Calatayud, M. (Author) / Department of Chemistry and Biochemistry (Contributor)
Created2014-09-04