Matching Items (12)

Optimization and parametric characterization of a hydrodynamic microvortex chip for single cell rotation

Description

Volumetric cell imaging using 3D optical Computed Tomography (cell CT) is advantageous for identification and characterization of cancer cells. Many diseases arise from genomic changes, some of which are manifest

Volumetric cell imaging using 3D optical Computed Tomography (cell CT) is advantageous for identification and characterization of cancer cells. Many diseases arise from genomic changes, some of which are manifest at the cellular level in cytostructural and protein expression (functional) features which can be resolved, captured and quantified in 3D far more sensitively and specifically than in traditional 2D microscopy. Live single cells were rotated about an axis perpendicular to the optical axis to facilitate data acquisition for functional live cell CT imaging. The goal of this thesis research was to optimize and characterize the microvortex rotation chip. Initial efforts concentrated on optimizing the microfabrication process in terms of time (6-8 hours v/s 12-16 hours), yield (100% v/s 40-60%) and ease of repeatability. This was done using a tilted exposure lithography technique, as opposed to the backside diffuser photolithography (BDPL) method used previously (Myers 2012) (Chang and Yoon 2004). The fabrication parameters for the earlier BDPL technique were also optimized so as to improve its reliability. A new, PDMS to PDMS demolding process (soft lithography) was implemented, greatly improving flexibility in terms of demolding and improving the yield to 100%, up from 20-40%. A new pump and flow sensor assembly was specified, tested, procured and set up, allowing for both pressure-control and flow-control (feedback-control) modes; all the while retaining the best features of a previous, purpose-built pump assembly. Pilot experiments were performed to obtain the flow rate regime required for cell rotation. These experiments also allowed for the determination of optimal trapezoidal neck widths (opening to the main flow channel) to be used for cell rotation characterization. The optimal optical trap forces were experimentally estimated in order to minimize the required optical power incident on the cell. Finally, the relationships between (main channel) flow rates and cell rotation rates were quantified for different trapezoidal chamber dimensions, and at predetermined constant values of laser trapping strengths, allowing for parametric characterization of the system.

Contributors

Agent

Created

Date Created
  • 2013

152949-Thumbnail Image.png

Design of miniaturized underwater vehicle with propulsions for deep-sea research applications

Description

The ocean is vital to the health of our planet but remains virtually unexplored. Many researchers seek to understand a wide range of geological and biological phenomena by developing

The ocean is vital to the health of our planet but remains virtually unexplored. Many researchers seek to understand a wide range of geological and biological phenomena by developing technologies which enable exploration of the deep-sea. The task of developing a technology which can withstand extreme pressure and temperature gradients in the deep ocean is not trivial. Of these technologies, underwater vehicles were developed to study the deep ocean, but remain large and expensive to manufacture. I am proposing the development of cost efficient miniaturized underwater vehicle (mUV) with propulsion systems to carry small measurement devices and enable deep-sea exploration. These mUV's overall size is optimized based on the vehicle parameters such as energy density, desired velocity, swimming time and propulsion performance. However, there are limitations associated with the size of the mUV which leads to certain challenges. For example, 2000 m below the sea level, the pressure is as high as 3000 psi. Therefore, certain underwater vehicle modules, such as the propulsion system, will require pressure housing to ensure the functionality of the thrust generation. In the case of a mUV swimming against the deep-sea current, a thrust magnitude is required to enable the vehicle to overcome the ocean current speed and move forward. Therefore, the size of the mUV is limited by the energy density and the propeller size. An equation is derived to miniaturize underwater vehicle while performing with a certain specifications. An inrunner three-phase permanent magnet brushless DC motor is designed and fabricated with a specific size to fit inside the mUV's core. The motor is composed of stator winding in a pressure housing and an open to water ring-propeller rotor magnet. Several ring-propellers are 3D printed and tested experimentally to determine their performances and efficiencies. A planer motion optimal trajectory for the mUV is determined to minimize the energy usage. Those studies enable the design of size optimized underwater vehicle with propulsion to carry small measurement sensors and enable underwater exploration. Developing mUV's will enable ocean exploration that can lead to significant scientific discoveries and breakthroughs that will solve current world health and environmental problems.

Contributors

Agent

Created

Date Created
  • 2014

155590-Thumbnail Image.png

A low-cost genomic sensor for ocean-observing systems and infectious disease detection

Description

Many environmental microorganisms such as marine microbes are un-culturable; hence, they should be analyzed in situ. Even though a few in situ ocean observing instruments have been available to oceanographers,

Many environmental microorganisms such as marine microbes are un-culturable; hence, they should be analyzed in situ. Even though a few in situ ocean observing instruments have been available to oceanographers, their applications are limited, because these instruments are expensive and power hungry.

In this dissertation project, an inexpensive, portable, low-energy consuming, and highly quantitative microbiological genomic sensor has been developed for in situ ocean-observing systems. A novel real-time colorimetric loop-mediated isothermal amplification (LAMP) technology has been developed for quantitative detection of microbial nucleic acids. This technology was implemented on a chip-level device with an embedded inexpensive imaging device and temperature controller to achieve quantitative detection within one hour. A bubble-free liquid handling approach was introduced to avoid bubble trapping during liquid loading, a common problem in microfluidic devices. An algorithm was developed to reject the effect of bubbles generated during the reaction process, to enable more accurate nucleic acid analysis. This genomic sensor has been validated at gene and gene expression levels using Synechocystis sp. PCC 6803 genomic DNA and total RNA. Results suggest that the detection limits reached 10 copies/μL and 100 fg/μL, respectively. This approach was highly quantitative, with linear standard curves down to 103 copies/μL and 1 pg/μL, respectively. In addition to environmental microbe characterization, this genomic sensor has been employed for viral RNA quantification during an infectious disease outbreak. As the Zika fever was spreading in America, a quantitative detection of Zika virus has been performed. The results show that the genomic sensor is highly quantitative from 10 copies/μL to 105 copies/μL. This suggests that the novel nucleic acid quantification technology is sensitive, quantitative, and robust. It is a promising candidate for rapid microbe detection and quantification in routine laboratories.

In the future, this genomic sensor will be implemented in in situ platforms as a core analytical module with minor modifications, and could be easily accessible by oceanographers. Deployment of this microbial genomic sensor in the field will enable new scientific advances in oceanography and provide a possible solution for infectious disease detection.

Contributors

Agent

Created

Date Created
  • 2017

154363-Thumbnail Image.png

High-throughput platforms for tumor dormancy-relapse and biomolecule binding using aminoglycoside-derived hydrogels

Description

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost

Relapse after tumor dormancy is one of the leading causes of cancer recurrence that ultimately leads to patient mortality. Upon relapse, cancer manifests as metastases that are linked to almost 90% cancer related deaths. Capture of the dormant and relapsed tumor phenotypes in high-throughput will allow for rapid targeted drug discovery, development and validation. Ablation of dormant cancer will not only completely remove the cancer disease, but also will prevent any future recurrence. A novel hydrogel, Amikagel, was developed by crosslinking of aminoglycoside amikacin with a polyethylene glycol crosslinker. Aminoglycosides contain abundant amount of easily conjugable groups such as amino and hydroxyl moieties that were crosslinked to generate the hydrogel. Cancer cells formed 3D spheroidal structures that underwent near complete dormancy on Amikagel high-throughput drug discovery platform. Due to their dormant status, conventional anticancer drugs such as mitoxantrone and docetaxel that target the actively dividing tumor phenotype were found to be ineffective. Hypothesis driven rational drug discovery approaches were used to identify novel pathways that could sensitize dormant cancer cells to death. Strategies were used to further accelerate the dormant cancer cell death to save time required for the therapeutic outcome.

Amikagel’s properties were chemo-mechanically tunable and directly impacted the outcome of tumor dormancy or relapse. Exposure of dormant spheroids to weakly stiff and adhesive formulation of Amikagel resulted in significant relapse, mimicking the response to changes in extracellular matrix around dormant tumors. Relapsed cells showed significant differences in their metastatic potential compared to the cells that remained dormant after the induction of relapse. Further, the dissertation discusses the use of Amikagels as novel pDNA binding resins in microbead and monolithic formats for potential use in chromatographic purifications. High abundance of amino groups allowed their utilization as novel anion-exchange pDNA binding resins. This dissertation discusses Amikagel formulations for pDNA binding, metastatic cancer cell separation and novel drug discovery against tumor dormancy and relapse.

Contributors

Agent

Created

Date Created
  • 2016

155112-Thumbnail Image.png

Single cell RT-qPCR on 3D cell spheroids

Description

A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is

A single cell is the very fundamental element in an organism; however, it contains the most complicated and stochastic information, such as DNA, RNA, and protein expression. Thus, it is a necessity to study stochastic gene expression in order to discover the biosignatures at the single-cell level. The heterogeneous gene expression of single cells from an isogenic cell population has already been studied for years. Yet to date, single-cell studies have been confined in a fashion of analyzing isolated single cells or a dilution of cells from the bulk-cell populations. These techniques or devices are limited by either the mechanism of cell lysis or the difficulties to target specific cells without harming neighboring cells.

This dissertation presents the development of a laser lysis chip combined with a two-photon laser system to perform single-cell lysis of single cells in situ from three-dimensional (3D) cell spheroids followed by analysis of the cell lysate with two-step reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The 3D spheroids were trapped in a well in the custom-designed laser lysis chip. Next, each single cell of interest in the 3D spheroid was identified and lysed one at a time utilizing a two-photon excited laser. After each cell lysis, the contents inside the target cell were released to the surrounding media and carried out to the lysate collector. Finally, the gene expression of each individual cell was measured by two-step RT-qPCR then spatially mapped back to its original location in the spheroids to construct a 3D gene expression map.

This novel technology and approach enables multiple gene expression measurements in single cells of multicellular organisms as well as cell-to-cell heterogeneous responses to the environment with spatial recognition. Furthermore, this method can be applied to study precancerous tissues for a better understanding of cancer progression and for identifying early tumor development.

Contributors

Agent

Created

Date Created
  • 2016

153412-Thumbnail Image.png

Ion flux regulates inflammasome signaling

Description

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate immune response to danger signals. Importantly, the NLRP3 inflammasome responds to structurally and functionally dissimilar stimuli. It

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate immune response to danger signals. Importantly, the NLRP3 inflammasome responds to structurally and functionally dissimilar stimuli. It is currently unknown how the NLRP3 inflammasome responds to such diverse triggers. This dissertation investigates the role of ion flux in regulating the NLRP3 inflammasome. Project 1 explores the relationship between potassium efflux and Syk tyrosine kinase. The results reveal that Syk activity is upstream of mitochondrial oxidative signaling and is crucial for inflammasome assembly, pro-inflammatory cytokine processing, and caspase-1-dependent pyroptotic cell death. Dynamic potassium imaging and molecular analysis revealed that Syk is downstream of, and regulated by, potassium efflux. Project 1 reveals the first identified intermediate regulator of inflammasome activity regulated by potassium efflux. Project 2 focuses on P2X7 purinergic receptor-dependent ion flux in regulating the inflammasome. Dynamic potassium imaging revealed an ATP dose-dependent efflux of potassium driven by P2X7. Surprisingly, ATP induced mitochondrial potassium mobilization, suggesting a mitochondrial detection of purinergic ion flux. ATP-induced potassium and calcium flux was found to regulate mitochondrial oxidative signaling upstream of inflammasome assembly. First-ever multiplexed imaging of potassium and calcium dynamics revealed that potassium efflux is necessary for calcium influx. These results suggest that ATP-induced potassium efflux regulates the inflammasome by calcium influx-dependent mitochondrial oxidative signaling. Project 2 defines a coordinated cation flux dependent on the efflux of potassium and upstream of mitochondrial oxidative signaling in inflammasome regulation. Lastly, this dissertation contributes two methods that will be useful for investigating inflammasome biology: an optimized pipeline for single cell transcriptional analysis, and a mouse macrophage cell line expressing a genetically encoded intracellular ATP sensor. This dissertation contributes to understanding the fundamental role of ion flux in regulation of the NLRP3 inflammasome and identifies potassium flux and Syk as potential targets to modulate inflammation.

Contributors

Agent

Created

Date Created
  • 2015

152709-Thumbnail Image.png

Engineering cyanobacteria to convert carbon dioxide to building blocks for renewable plastics

Description

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria

The production of monomer compounds for synthesizing plastics has to date been largely restricted to the petroleum-based chemical industry and sugar-based microbial fermentation, limiting its sustainability and economic feasibility. Cyanobacteria have, however, become attractive microbial factories to produce renewable fuels and chemicals directly from sunlight and CO2. To explore the feasibility of photosynthetic production of (S)- and (R)-3-hydroxybutyrate (3HB), building-block monomers for synthesizing the biodegradable plastics polyhydroxyalkanoates and precursors to fine chemicals, synthetic metabolic pathways have been constructed, characterized and optimized in the cyanobacterium Synechocystis sp. PCC 6803 (hereafter Synechocystis 6803). Both types of 3HB molecules were produced and readily secreted from Synechocystis cells without over-expression of transporters. Additional inactivation of the competing PHB biosynthesis pathway further promoted the 3HB production. Analysis of the intracellular acetyl-CoA and anion concentrations in the culture media indicated that the phosphate consumption during the photoautotrophic growth and the concomitant elevated acetyl-CoA pool acted as a key driving force for 3HB biosynthesis in Synechocystis. Fine-tuning of the gene expression levels via strategies, including tuning gene copy numbers, promoter engineering and ribosome binding site optimization, proved critical to mitigating metabolic bottlenecks and thus improving the 3HB production. One of the engineered Synechocystis strains, namely R168, was able to produce (R)-3HB to a cumulative titer of ~1600 mg/L, with a peak daily productivity of ~200 mg/L, using light and CO2 as the sole energy and carbon sources, respectively. Additionally, in order to establish a high-efficiency transformation protocol in cyanobacterium Synechocystis 6803, methyltransferase-encoding genes were cloned and expressed to pre-methylate the exogenous DNA before Synechocystis transformation. Eventually, the transformation efficiency was increased by two orders of magnitude in Synechocystis. This research has demonstrated the use of cyanobacteria as cell factories to produce 3HB directly from light and CO2, and developed new synthetic biology tools for cyanobacteria.

Contributors

Agent

Created

Date Created
  • 2014

152809-Thumbnail Image.png

Transcriptome and metabolic profiling of premalignant progression in Barrett's esophagus

Description

Cell-cell interactions in a microenvironment under stress conditions play a critical role in pathogenesis and pre-malignant progression. Hypoxia is a central factor in carcinogenesis, which induces selective pressure in this

Cell-cell interactions in a microenvironment under stress conditions play a critical role in pathogenesis and pre-malignant progression. Hypoxia is a central factor in carcinogenesis, which induces selective pressure in this process. Understanding the role of intercellular communications and cellular adaptation to hypoxia can help discover new cancer biosignatures and more effective diagnostic and therapeutic strategies. This dissertation presents a study on transcriptomic and metabolic profiling of pre-malignant progression of Barrett's esophagus. It encompasses two methodology developments and experimental findings of two related studies. To integrate phenotype and genotype measurements, a minimally invasive method was developed for selectively retrieving single adherent cells from cell cultures. Selected single cells can be harvested by a combination of mechanical force and biochemical treatment after phenotype measurements and used for end-point assays. Furthermore, a method was developed for analyzing expression levels of ten genes in individual mammalian cells with high sensitivity and reproducibility without the need of pre-amplifying cDNA. It is inexpensive and compatible with most of commercially available RT-qPCR systems, which warrants a wide applicability of the method to gene expression analysis in single cells. In the first study, the effect of intercellular interactions was investigated between normal esophageal epithelial and dysplastic Barrett's esophagus cells on gene expression levels and cellular functions. As a result, gene expression levels in dysplastic cells were found to be affected to a significantly larger extent than in the normal esophageal epithelial cells. These differentially expressed genes are enriched in cellular movement, TGFβ and EGF signaling networks. Heterotypic interactions between normal and dysplastic cells can change cellular motility and inhibit proliferation in both normal and dysplastic cells. In the second study, alterations in gene transcription levels and metabolic phenotypes between hypoxia-adapted cells and age-matched normoxic controls representing four different stages of pre-malignant progression in Barrett's esophagus were investigated. Through differential gene expression analysis and mitochondrial membrane potential measurements, evidence of clonal evolution induced by hypoxia selection pressure in metaplastic and high-grade dysplastic cells was found. These discoveries on cell-cell interactions and hypoxia adaptations provide a deeper insight into the dynamic evolutionary process in pre-malignant progression of Barrett's esophagus.

Contributors

Agent

Created

Date Created
  • 2014

152764-Thumbnail Image.png

Improved microfabrication technologies for single cell metabolic analysis

Description

Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been

Within the last decade there has been remarkable interest in single-cell metabolic analysis as a key technology for understanding cellular heterogeneity, disease initiation, progression, and drug resistance. Technologies have been developed for oxygen consumption rate (OCR) measurements using various configurations of microfluidic devices. The technical challenges of current approaches include: (1) deposition of multiple sensors for multi-parameter metabolic measurements, e.g. oxygen, pH, etc.; (2) tedious and labor-intensive microwell array fabrication processes; (3) low yield of hermetic sealing between two rigid fused silica parts, even with a compliance layer of PDMS or Parylene-C. In this thesis, several improved microfabrication technologies are developed and demonstrated for analyzing multiple metabolic parameters from single cells, including (1) a modified "lid-on-top" configuration with a multiple sensor trapping (MST) lid which spatially confines multiple sensors to micro-pockets enclosed by lips for hermetic sealing of wells; (2) a multiple step photo-polymerization method for patterning three optical sensors (oxygen, pH and reference) on fused silica and on a polyethylene terephthalate (PET) surface; (3) a photo-polymerization method for patterning tri-color (oxygen, pH and reference) optical sensors on both fused silica and on the PET surface; (4) improved KMPR/SU-8 microfabrication protocols for fabricating microwell arrays that can withstand cell culture conditions. Implementation of these improved microfabrication methods should address the aforementioned challenges and provide a high throughput and multi-parameter single cell metabolic analysis platform.

Contributors

Agent

Created

Date Created
  • 2014

151156-Thumbnail Image.png

Underwater optical sensorbot for in situ pH monitoring

Description

Continuous underwater observation is a challenging engineering task that could be accomplished by development and deployment of a sensor array that can survive harsh underwater conditions. One approach to this

Continuous underwater observation is a challenging engineering task that could be accomplished by development and deployment of a sensor array that can survive harsh underwater conditions. One approach to this challenge is a swarm of micro underwater robots, known as Sensorbots, that are equipped with biogeochemical sensors that can relay information among themselves in real-time. This innovative method for underwater exploration can contribute to a more comprehensive understanding of the ocean by not limiting sampling to a single point and time. In this thesis, Sensorbot Beta, a low-cost fully enclosed Sensorbot prototype for bench-top characterization and short-term field testing, is presented in a modular format that provides flexibility and the potential for rapid design. Sensorbot Beta is designed around a microcontroller driven platform comprised of commercial off-the-shelf components for all hardware to reduce cost and development time. The primary sensor incorporated into Sensorbot Beta is an in situ fluorescent pH sensor. Design considerations have been made for easy adoption of other fluorescent or phosphorescent sensors, such as dissolved oxygen or temperature. Optical components are designed in a format that enables additional sensors. A real-time data acquisition system, utilizing Bluetooth, allows for characterization of the sensor in bench top experiments. The Sensorbot Beta demonstrates rapid calibration and future work will include deployment for large scale experiments in a lake or ocean.

Contributors

Agent

Created

Date Created
  • 2012