Matching Items (10)

154102-Thumbnail Image.png

Study of structural, optical and electrical properties of InAs/InAsSb superlattices using multiple characterization techniques

Description

InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This

InAs/InAsSb type-II superlattices (T2SLs) can be considered as potential alternatives for conventional HgCdTe photodetectors due to improved uniformity, lower manufacturing costs with larger substrates, and possibly better device performance. This dissertation presents a comprehensive study on the structural, optical and electrical properties of InAs/InAsSb T2SLs grown by Molecular Beam Epitaxy.

The effects of different growth conditions on the structural quality were thoroughly investigated. Lattice-matched condition was successfully achieved and material of exceptional quality was demonstrated.

After growth optimization had been achieved, structural defects could hardly be detected, so different characterization techniques, including etch-pit-density (EPD) measurements, cathodoluminescence (CL) imaging and X-ray topography (XRT), were explored, in attempting to gain better knowledge of the sparsely distributed defects. EPD revealed the distribution of dislocation-associated pits across the wafer. Unfortunately, the lack of contrast in images obtained by CL imaging and XRT indicated their inability to provide any quantitative information about defect density in these InAs/InAsSb T2SLs.

The nBn photodetectors based on mid-wave infrared (MWIR) and long-wave infrared (LWIR) InAs/InAsSb T2SLs were fabricated. The significant difference in Ga composition in the barrier layer coupled with different dark current behavior, suggested the possibility of different types of band alignment between the barrier layers and the absorbers. A positive charge density of 1.8 × 1017/cm3 in the barrier of MWIR nBn photodetector, as determined by electron holography, confirmed the presence of a potential well in its valence band, thus identifying type-II alignment. In contrast, the LWIR nBn photodetector was shown to have type-I alignment because no sign of positive charge was detected in its barrier.

Capacitance-voltage measurements were performed to investigate the temperature dependence of carrier densities in a metal-oxide-semiconductor (MOS) structure based on MWIR InAs/InAsSb T2SLs, and a nBn structure based on LWIR InAs/InAsSb T2SLs. No carrier freeze-out was observed in either sample, indicating very shallow donor levels. The decrease in carrier density when temperature increased was attributed to the increased density of holes that had been thermally excited from localized states near the oxide/semiconductor interface in the MOS sample. No deep-level traps were revealed in deep-level transient spectroscopy temperature scans.

Contributors

Agent

Created

Date Created
  • 2015

152670-Thumbnail Image.png

Characterization of MBE-grown semiconductor materials for photovoltaic applications

Description

The research described in this dissertation involved the use of transmission electron microscopy (TEM) to characterize II-VI and III-V compound semiconductor quantum dots (QDs) and dilute-nitride alloys grown by molecular

The research described in this dissertation involved the use of transmission electron microscopy (TEM) to characterize II-VI and III-V compound semiconductor quantum dots (QDs) and dilute-nitride alloys grown by molecular beam epitaxy (MBE) and intended for photovoltaic applications. The morphology of CdTe QDs prepared by the post-annealing MBE method were characterized by various microscopy techniques including high-resolution transmission electron microscopy (HR-TEM), and high-angle annular-dark-field scanning transmission electron microscopy (HAADF-STEM). Extensive observations revealed that the of QD shapes were not well-defined, and the QD size and spatial distribution were not determined by the amount of CdTe deposition. These results indicated that the formation of II-VI QDs using a post-annealing treatment did not follow the conventional growth mechanism for III-V and IV-IV materials. The structural properties of dilute-nitride GaAsNx films grown using plasma-assisted MBE were characterized by TEM and HAADF-STEM. A significant amount of the nitrogen incorporated into the dilute nitride films was found to be interstitial, and that fluctuations in local nitrogen composition also occurred during growth. Post-growth partial relaxation of strain resulted in the formation of {110}-oriented microcracks in the sample with the largest substitutional nitrogen composition. Single- and multi-layered InAs QDs grown on GaAsSb/GaAs composite substrates were investigated using HR-TEM and HAADF-STEM. Correlation between the structural and optoelectronic properties revealed that the GaAsSb barrier layers had played an important role in tuning the energy-band alignments but without affecting the overall structural morphology. However, according to both XRD measurement and electron microscopy the densities of dislocations increased as the number of QD layers built up. An investigation of near-wetting layer-free InAs QDs incorporated with AlAs/GaAs spacer layers was carried out. The microscopy observations revealed that both embedded and non-embedded near-wetting layer-free InAs QDs did not have well-defined shapes unlike conventional InAs QDs. According to AFM analysis and plan-view TEM characterization, the InAs QDs incorporated with spacer layers had smaller dot density and more symmetrical larger sizes with an apparent bimodal size distribution (two distinct families of large and small dots) in comparison with conventional InAs QDs grown without any spacer layer.

Contributors

Agent

Created

Date Created
  • 2014

151457-Thumbnail Image.png

TEM characterization of electrically stressed high electron mobility transistors

Description

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well

High electron mobility transistors (HEMTs) based on Group III-nitride heterostructures have been characterized by advanced electron microscopy methods including off-axis electron holography, nanoscale chemical analysis, and electrical measurements, as well as other techniques. The dissertation was organized primarily into three topical areas: (1) characterization of near-gate defects in electrically stressed AlGaN/GaN HEMTs, (2) microstructural and chemical analysis of the gate/buffer interface of AlN/GaN HEMTs, and (3) studies of the impact of laser-liftoff processing on AlGaN/GaN HEMTs. The electrical performance of stressed AlGaN/GaN HEMTs was measured and the devices binned accordingly. Source- and drain-side degraded, undegraded, and unstressed devices were then prepared via focused-ion-beam milling for examination. Defects in the near-gate region were identified and their correlation to electrical measurements analyzed. Increased gate leakage after electrical stressing is typically attributed to "V"-shaped defects at the gate edge. However, strong evidence was found for gate metal diffusion into the barrier layer as another contributing factor. AlN/GaN HEMTs grown on sapphire substrates were found to have high electrical performance which is attributed to the AlN barrier layer, and robust ohmic and gate contact processes. TEM analysis identified oxidation at the gate metal/AlN buffer layer interface. This thin a-oxide gate insulator was further characterized by energy-dispersive x-ray spectroscopy and energy-filtered TEM. Attributed to this previously unidentified layer, high reverse gate bias up to −30 V was demonstrated and drain-induced gate leakage was suppressed to values of less than 10−6 A/mm. In addition, extrinsic gm and ft * LG were improved to the highest reported values for AlN/GaN HEMTs fabricated on sapphire substrates. Laser-liftoff (LLO) processing was used to separate the active layers from sapphire substrates for several GaN-based HEMT devices, including AlGaN/GaN and InAlN/GaN heterostructures. Warpage of the LLO samples resulted from relaxation of the as-grown strain and strain arising from dielectric and metal depositions, and this strain was quantified by both Newton's rings and Raman spectroscopy methods. TEM analysis demonstrated that the LLO processing produced no detrimental effects on the quality of the epitaxial layers. TEM micrographs showed no evidence of either damage to the ~2 μm GaN epilayer generated threading defects.

Contributors

Agent

Created

Date Created
  • 2012

157257-Thumbnail Image.png

Monolithic Heterovalent Integration of Compound Semiconductors and Their Applications

Description

Compound semiconductors tend to be more ionic if the cations and anions are further apart in atomic columns, such as II-VI compared to III-V compounds, due in part to the

Compound semiconductors tend to be more ionic if the cations and anions are further apart in atomic columns, such as II-VI compared to III-V compounds, due in part to the greater electronegativity difference between group-II and group-VI atoms. As the electronegativity between the atoms increases, the materials tend to have more insulator-like properties, including higher energy band gaps and lower indices of refraction. This enables significant differences in the optical and electronic properties between III-V, II-VI, and IV-VI semiconductors. Many of these binary compounds have similar lattice constants and therefore can be grown epitaxially on top of each other to create monolithic heterovalent and heterocrystalline heterostructures with optical and electronic properties unachievable in conventional isovalent heterostructures.

Due to the difference in vapor pressures and ideal growth temperatures between the different materials, precise growth methods are required to optimize the structural and optical properties of the heterovalent heterostructures. The high growth temperatures of the III-V materials can damage the II-VI barrier layers, and therefore a compromise must be found for the growth of high-quality III-V and II-VI layers in the same heterostructure. In addition, precise control of the interface termination has been shown to play a significant role in the crystal quality of the different layers in the structure. For non-polar orientations, elemental fluxes of group-II and group-V atoms consistently help to lower the stacking fault and dislocation density in the II-VI/III-V heterovalent heterostructures.

This dissertation examines the epitaxial growth of heterovalent and heterocrystalline heterostructures lattice-matched to GaAs, GaSb, and InSb substrates in a single-chamber growth system. The optimal growth conditions to achieve alternating layers of III-V, II-VI, and IV-VI semiconductors have been investigated using temperature ramps, migration-enhanced epitaxy, and elemental fluxes at the interface. GaSb/ZnTe distributed Bragg reflectors grown in this study significantly outperform similar isovalent GaSb-based reflectors and show great promise for mid-infrared applications. Also, carrier confinement in GaAs/ZnSe quantum wells was achieved with a low-temperature growth technique for GaAs on ZnSe. Additionally, nearly lattice-matched heterocrystalline PbTe/CdTe/InSb heterostructures with strong infrared photoluminescence were demonstrated, along with virtual (211) CdZnTe/InSb substrates with extremely low defect densities for long-wavelength optoelectronic applications.

Contributors

Agent

Created

Date Created
  • 2019

155122-Thumbnail Image.png

Characterization of the structural and optical properties of III-V semiconductor materials for solar cell applications

Description

The work contained in this dissertation is focused on the structural and optical properties of III-V semiconductor structures for solar cell applications. By using transmission electron microscopy, many of their

The work contained in this dissertation is focused on the structural and optical properties of III-V semiconductor structures for solar cell applications. By using transmission electron microscopy, many of their structural properties have been investigated, including morphology, defects, and strain relaxation. The optical properties of the semiconductor structures have been studied by photoluminescence and cathodoluminescence.

Part of this work is focused on InAs quantum dots (QDs) embedded in AlGaAs matrices. This QD system is important for the realization of intermediate-band solar cells, which has three light absorption paths for high efficiency photovoltaics. The suppression of plastic strain relaxation in the QDs shows a significant improvement of the optoelectronic properties. A partial capping followed by a thermal annealing step is used to achieve spool-shaped QDs with a uniform height following the thickness of the capping layer. This step keeps the height of the QDs below a critical value that is required for plastic relaxation. The spool-shaped QDs exhibit two photoluminescence peaks that are attributed to ground and excited state transitions. The luminescence peak width is associated with the QD diameter distribution. An InAs cover layer formed during annealing is found responsible for the loss of the confinement of the excited states in smaller QDs.

The second part of this work is focused on the investigation of the InxGa1-xN thin films having different bandgaps for double-junction solar cells. InxGa1-xN films with x ≤ 0.15 were grown by metal organic chemical vapor deposition. The defects in films with different indium contents have been studied. Their effect on the optical properties of the film have been investigated by cathodoluminescence. InxGa1-xN films with indium contents higher than 20% were grown by molecular beam epitaxy. The strain relaxation in the films has been measured from electron diffraction patterns taken in cross-sectional TEM specimens. Moiré fringes in some of the films reveal interfacial strain relaxation that is explained by a critical thickness model.

Contributors

Agent

Created

Date Created
  • 2016

156110-Thumbnail Image.png

Characterization of perovskite oxide/semiconductor heterostructures

Description

Integrated oxide/semiconductor heterostructures have attracted intense interest for device applications which require sharp interfaces and controlled defects. The research of this dissertation has focused on the characterization of perovskite oxide/oxide

Integrated oxide/semiconductor heterostructures have attracted intense interest for device applications which require sharp interfaces and controlled defects. The research of this dissertation has focused on the characterization of perovskite oxide/oxide and oxide/semiconductor heterostructures, and the analysis of interfaces and defect structures, using scanning transmission electrom microscopy (STEM) and related techniques.

The SrTiO3/Si system was initially studied to develop a basic understanding of the integration of perovskite oxides with semiconductors, and successful integration with abrupt interfaces was demonstrated. Defect analysis showed no misfit dislocations but only anti-phase boundaries (APBs) in the SrTiO3 (STO) films. Similar defects were later observed in other perovskite oxide heterostructures.

Ferroelectric BaTiO3 (BTO) thin films deposited directly onto STO substrates, or STO buffer layers with Ge substrates, were grown by molecular beam epitaxy (MBE) in order to control the polarization orientation for field-effect transistors (FETs). STEM imaging and elemental mapping by electron energy-loss spectroscopy (EELS) showed structurally and chemically abrupt interfaces, and the BTO films retained the c-axis-oriented tetragonal structure for both BTO/STO and BTO/STO/Ge heterostructures. The polarization displacement in the BTO films of TiN/BTO/STO heterostructures was investigated. The Ti4+ atomic column displacements and lattice parameters were measured directly using HAADF images. A polarization gradient, which switched from upwards to downwards, was observed in the BTO thin film, and evidence was found for positively-charged oxygen vacancies.

Heterostructures grown on Ge substrates by atomic layer deposition (ALD) were characterized and compared with MBE-grown samples. A two-step process was needed to overcome interlayer reaction at the beginning of ALD growth. A-site-rich oxide films with thicknesses of at least 2-nm had to be deposited and then crystallized before initiating deposition of the following perovskite oxide layer in order to suppress the formation of amorphous oxide layers on the Ge surface. BTO/STO/Ge, BTO/Ge, SrHfTiO3/Ge and SrZrO3/Ge thin films with excellent crystallinity were grown using this process.

Metal-insulator-metal (MIM) heterostructures were fabricated as ferroelectric capacitors and then electrically stressed to the point of breakdown to correlate structural changes with electrical and physical properties. BaTiO3 on Nb:STO was patterned with different top metal electrodes by focused-ion-beam milling, Au/Ni liftoff, and an isolation-defined approach.

Contributors

Agent

Created

Date Created
  • 2018

153383-Thumbnail Image.png

Characterization of electrostatic potential and trapped charge in semiconductor nanostructures using off-axis electron holography

Description

Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films,

Off-axis electron holography (EH) has been used to characterize electrostatic potential, active dopant concentrations and charge distribution in semiconductor nanostructures, including ZnO nanowires (NWs) and thin films, ZnTe thin films, Si NWs with axial p-n junctions, Si-Ge axial heterojunction NWs, and Ge/LixGe core/shell NW.

The mean inner potential (MIP) and inelastic mean free path (IMFP) of ZnO NWs have been measured to be 15.3V±0.2V and 55±3nm, respectively, for 200keV electrons. These values were then used to characterize the thickness of a ZnO nano-sheet and gave consistent values. The MIP and IMFP for ZnTe thin films were measured to be 13.7±0.6V and 46±2nm, respectively, for 200keV electrons. A thin film expected to have a p-n junction was studied, but no signal due to the junction was observed. The importance of dynamical effects was systematically studied using Bloch wave simulations.

The built-in potentials in Si NWs across the doped p-n junction and the Schottky junction due to Au catalyst were measured to be 1.0±0.3V and 0.5±0.3V, respectively. Simulations indicated that the dopant concentrations were ~1019cm-3 for donors and ~1017 cm-3 for acceptors. The effects of positively charged Au catalyst, a possible n+-n--p junction transition region and possible surface charge, were also systematically studied using simulations.

Si-Ge heterojunction NWs were studied. Dopant concentrations were extracted by atom probe tomography. The built-in potential offset was measured to be 0.4±0.2V, with the Ge side lower. Comparisons with simulations indicated that Ga present in the Si region was only partially activated. In situ EH biasing experiments combined with simulations indicated the B dopant in Ge was mostly activated but not the P dopant in Si. I-V characteristic curves were measured and explained using simulations.

The Ge/LixGe core/shell structure was studied during lithiation. The MIP for LixGe decreased with time due to increased Li content. A model was proposed to explain the lower measured Ge potential, and the trapped electron density in Ge core was calculated to be 3×1018 electrons/cm3. The Li amount during lithiation was also calculated using MIP and volume ratio, indicating that it was lower than the fully lithiated phase.

Contributors

Agent

Created

Date Created
  • 2015

153385-Thumbnail Image.png

Characterization of magnetic nanostructures using off-axis electron holography

Description

This dissertation research has involved microscopic characterization of magnetic nanostructures using off-axis electron holography and Lorentz microscopy. The nanostructures investigated have included Co nanoparticles (NPs), Au/Fe/GaAs shell/core nanowires (NWs), carbon

This dissertation research has involved microscopic characterization of magnetic nanostructures using off-axis electron holography and Lorentz microscopy. The nanostructures investigated have included Co nanoparticles (NPs), Au/Fe/GaAs shell/core nanowires (NWs), carbon spirals with magnetic cores, magnetic nanopillars, Ni-Zn-Co spinel ferrite and CoFe/Pd multilayers. The studies have confirmed the capability of holography to describe the behavior of magnetic structures at the nanoscale.

The phase changes caused by the fringing fields of chains consisting of Co NPs were measured and calculated. The difference between chains with different numbers of Co NPs followed the trend indicated by calculations. Holography studies of Au/Fe/GaAs NWs grown on (110) GaAs substrates with rotationally non-uniform coating confirmed that Fe was present in the shell and that the shell behaved as a bar magnet. No fringing field was observed from NWs with cylindrical coating grown on (111)B GaAs substrates. The most likely explanation is that magnetic fields are confined within the shells and form closed loops. The multiple-magnetic-domain structure of iron carbide cores in carbon spirals was imaged using phase maps of the fringing fields. The strength and range of this fringing field was insufficient for manipulating the carbon spirals with an external applied magnetic field. No magnetism was revealed for CoPd/Fe/CoPd magnetic nanopillars. Degaussing and MFM scans ruled out the possibility that saturated magnetization and sample preparation had degraded the anisotropy, and the magnetism, respectively. The results suggested that these nanopillars were not suitable as candidates for prototypical bit information storage devices.

Observations of Ni-Zn-Co spinel ferrite thin films in plan-view geometry indicated a multigrain magnetic domain structure and the magnetic fields were oriented in-plane only with no preferred magnetization distribution. This domain structure helps explain this ferrite's high permeability at high resonance frequency, which is an unusual character.

Perpendicular magnetic anisotropy (PMA) of CoFe/Pd multilayers was revealed using holography. Detailed microscopic characterization showed structural factors such as layer waviness and interdiffusion that could contribute to degradation of the PMA. However, these factors are overwhelmed by the dominant effect of the CoFe layer thickness, and can be ignored when considering magnetic domain structure.

Contributors

Agent

Created

Date Created
  • 2015

151745-Thumbnail Image.png

Optical properties of wurtzite semiconductors studied using cathodoluminescence imaging and spectroscopy

Description

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By

The work contained in this dissertation is focused on the optical properties of direct band gap semiconductors which crystallize in a wurtzite structure: more specifically, the III-nitrides and ZnO. By using cathodoluminescence spectroscopy, many of their properties have been investigated, including band gaps, defect energy levels, carrier lifetimes, strain states, exciton binding energies, and effects of electron irradiation on luminescence. Part of this work is focused on p-type Mg-doped GaN and InGaN. These materials are extremely important for the fabrication of visible light emitting diodes and diode lasers and their complex nature is currently not entirely understood. The luminescence of Mg-doped GaN films has been correlated with electrical and structural measurements in order to understand the behavior of hydrogen in the material. Deeply-bound excitons emitting near 3.37 and 3.42 eV are observed in films with a significant hydrogen concentration during cathodoluminescence at liquid helium temperatures. These radiative transitions are unstable during electron irradiation. Our observations suggest a hydrogen-related nature, as opposed to a previous assignment of stacking fault luminescence. The intensity of the 3.37 eV transition can be correlated with the electrical activation of the Mg acceptors. Next, the acceptor energy level of Mg in InGaN is shown to decrease significantly with an increase in the indium composition. This also corresponds to a decrease in the resistivity of these films. In addition, the hole concentration in multiple quantum well light emitting diode structures is much more uniform in the active region when Mg-doped InGaN (instead of Mg-doped GaN) is used. These results will help improve the efficiency of light emitting diodes, especially in the green/yellow color range. Also, the improved hole transport may prove to be important for the development of photovoltaic devices. Cathodoluminescence studies have also been performed on nanoindented ZnO crystals. Bulk, single crystal ZnO was indented using a sub-micron spherical diamond tip on various surface orientations. The resistance to deformation (the "hardness") of each surface orientation was measured, with the c-plane being the most resistive. This is due to the orientation of the easy glide planes, the c-planes, being positioned perpendicularly to the applied load. The a-plane oriented crystal is the least resistive to deformation. Cathodoluminescence imaging allows for the correlation of the luminescence with the regions located near the indentation. Sub-nanometer shifts in the band edge emission have been assigned to residual strain the crystals. The a- and m-plane oriented crystals show two-fold symmetry with regions of compressive and tensile strain located parallel and perpendicular to the ±c-directions, respectively. The c-plane oriented crystal shows six-fold symmetry with regions of tensile strain extending along the six equivalent a-directions.

Contributors

Agent

Created

Date Created
  • 2013

156493-Thumbnail Image.png

Investigating Optoelectronic and Electronic Materials for Next Generation Semiconductor Devices

Description

This dissertation describes the characterization of optoelectronic and electronic materials being considered for next generation semiconductor devices, primarily using electron microscopy techniques. The research included refinement of growth parameters for

This dissertation describes the characterization of optoelectronic and electronic materials being considered for next generation semiconductor devices, primarily using electron microscopy techniques. The research included refinement of growth parameters for optimizing material quality, and investigation of heterostructured interfaces. The results provide better understanding of the fundamental materials science and should lead to future improvements in device applications.

A microstructural study of tin selenide and tin manganese selenide thin films grown by molecular beam epitaxy (MBE) on GaAs (111)B substrates with different Se:Sn flux ratios and Mn concentrations was carried out. Low flux ratios lead to highly defective films, mostly consisting of SnSe, whereas higher flux ratios gave higher quality, single-phase SnSe2. The ternary (Sn,Mn)Se films evolved quasi-coherently, as the Mn concentration increased, from SnSe2 into a complex lattice, and then into MnSe with 3D rock-salt structure. These structural transformations should underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

II-VI/III-V compound semiconductor heterostructures have been characterized for growth in both single- and dual-chamber MBE systems. Three groups of lattice-matched materials have been investigated: i) 5.65Å materials based on GaAs, ii) 6.1Å materials based on InAs or GaSb, and iii) 6.5Å materials based on InSb. High quality II-VI materials grown on III-V substrates were demonstrated for ZnTe/GaSb and CdTe/InSb. III-V materials grown on II-VI buffer layers present additional challenges and were grown with varying degrees of success. InAsSb quantum wells in between ZnTe barriers were nearly defect-free, but showed 3D island growth. All other materials demonstrated flat interfaces, despite low growth temperature, but with stacking faults in the II-VI materials.

Femtosecond laser-induced defects (LIDs) in silicon solar cells were characterized using a variety of electron microscopy techniques. Scanning electron microscope (SEM) images showed that the intersections of laser lines, finger and busbar intersections, exhibited LIDs with the potential to shunt the contacts. SEM and transmission electron microscope (TEM) images correlated these LIDs with ablated c-Si and showed these defects to come in two sizes ~40nm and ~.5µm. The elemental profiles across defective and non-defective regions were found using energy dispersive x-ray spectroscopy.

Contributors

Agent

Created

Date Created
  • 2018