Matching Items (39)
151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
151342-Thumbnail Image.png
Description
Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus

Human-induced rapid environmental change (HIREC) influences nearly all of Earth's ecosystems through processes such as urbanization. Previous studies have found that urbanization influences biodiversity patterns, often yielding an increase in the abundance of a few urban-adapted taxa at the expense of native species diversity. The western black widow spider, Latrodectus hesperus, is a medically-important pest species that often forms dense urban subpopulations (i.e., infestations) relative to the low-density subpopulations found throughout undisturbed, desert habitat. Here, I employ field and laboratory studies to examine the population ecology and stoichiometry of this urban pest to increase our understanding of the mechanisms underlying its success. The population ecology of ten black widow subpopulations spread across metropolitan Phoenix, AZ was examined during the peak breeding season (June-August). This study revealed that arthropod prey abundance, female mass and population density of females showed significant spatial variation across the ten subpopulations. Additionally, prey abundance and foraging success, measured as the number of carcasses found in webs, were a strong determinant of female mass and population density within each subpopulation. To test the mechanisms that drive black widow infestations, I used ecological stoichiometry to examine the nutrient (nitrogen and phosphorus) composition of spiders and arthropod prey from urban habitat, desert habitat and a laboratory diet regime. These studies revealed that (1) spiders are more nutrient rich than cricket prey in the field, (2) spider subpopulations exhibit significant spatial variation in their nitrogen composition, (3) nutrient composition of urban spider subpopulations does not differ significantly from Sonoran desert subpopulations, (4) laboratory-reared spiders fed a diet of only laboratory-reared crickets are more nitrogen and phosphorus limited than field-captured spiders, and (5) cannibalism by laboratory-reared spiders alleviated phosphorus limitation, but not nitrogen limitation, when compared to field-captured spiders. This work highlights the need to examine the population ecology of species relationships, such as predator-prey dynamics, to fully understand the fecundity and population growth of urban pest species. Moreover, the integration of population ecology and stoichiometry illustrates the need to address mechanisms like nutrient limitation that may explain why urban pest populations thrive and native species diversity suffers following HIREC.
ContributorsTrubl, Patricia (Author) / Johnson, James C. (Thesis advisor) / Rutowski, Ronald (Thesis advisor) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2012
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
152591-Thumbnail Image.png
Description
The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability)

The explicit role of soil organisms in shaping soil health, rates of pedogenesis, and resistance to erosion has only just recently begun to be explored in the last century. However, much of the research regarding soil biota and soil processes is centered on maintaining soil fertility (e.g., plant nutrient availability) and soil structure in mesic- and agro- ecosystems. Despite the empirical and theoretical strides made in soil ecology over the last few decades, questions regarding ecosystem function and soil processes remain, especially for arid areas. Arid areas have unique ecosystem biogeochemistry, decomposition processes, and soil microbial responses to moisture inputs that deviate from predictions derived using data generated in more mesic systems. For example, current paradigm predicts that soil microbes will respond positively to increasing moisture inputs in a water-limited environment, yet data collected in arid regions are not congruent with this hypothesis. The influence of abiotic factors on litter decomposition rates (e.g., photodegradation), litter quality and availability, soil moisture pulse size, and resulting feedbacks on detrital food web structure must be explicitly considered for advancing our understanding of arid land ecology. However, empirical data coupling arid belowground food webs and ecosystem processes are lacking. My dissertation explores the resource controls (soil organic matter and soil moisture) on food web network structure, size, and presence/absence of expected belowground trophic groups across a variety of sites in Arizona.
ContributorsWyant, Karl Arthur (Author) / Sabo, John L (Thesis advisor) / Elser, James J (Committee member) / Childers, Daniel L. (Committee member) / Hall, Sharon J (Committee member) / Stromberg, Juliet C. (Committee member) / Arizona State University (Publisher)
Created2014
152635-Thumbnail Image.png
Description
Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes

Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes are known to be highly plastic. However, conspicuous color displays are perplexing in that they can be costly to produce and may increase detection by enemies. The Western black widow spider () is a superabundant pest species that forms dense aggregations throughout metropolitan Phoenix, Arizona, USA. Adult female display a red hourglass on their abdomen, which is speculated to function as a conspicuous warning signal to enemies. Here, I performed field studies to identify how widow morphology and hourglass color differ between urban and desert subpopulations. I also conducted laboratory experiments to examine the dietary sensitivity of hourglass coloration and to identify its functional role in the contexts of agonism, mating, and predator defense. My field data reveal significant spatial variation across urban and desert subpopulations in ecology and color. Furthermore, hourglass coloration was significantly influenced by environmental factors unique to urban habitats. Desert spiders were found to be smaller and less colorful than urban spiders. Throughout, I observed a positive correlation between body condition and hourglass size. Laboratory diet manipulations empirically confirm the condition-dependence of hourglass size. Additionally, widows with extreme body conditions exhibited condition-dependent coloration. However, hourglass obstruction and enlargement did not produce any effects on the outcome of agonistic encounters, male courtship, or predator deterrence. This work offers important insights into the effects of urbanization on the ecology and coloration of a superabundant pest species. While the function of the hourglass remains undetermined, my findings characterize the black widow's hourglass as extremely plastic. Plastic responses to novel environmental conditions can modify the targets of natural selection and subsequently influence evolutionary outcomes. Therefore, assuming a heritable component to this plasticity, the response of hourglass plasticity to the abrupt environmental changes in urban habitats may result in the rapid evolution of this phenotype.
ContributorsGburek, Theresa (Author) / Johnson, James C. (Thesis advisor) / McGraw, Kevin J. (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2014
153480-Thumbnail Image.png
Description

Non-native consumers can significantly alter processes at the population, community, and ecosystem level, and they are a major concern in many aquatic systems. Although the community-level effects of non-native anuran tadpoles are well understood, their ecosystem-level effects have been less studied. Here, I tested the hypothesis that natural densities of

Non-native consumers can significantly alter processes at the population, community, and ecosystem level, and they are a major concern in many aquatic systems. Although the community-level effects of non-native anuran tadpoles are well understood, their ecosystem-level effects have been less studied. Here, I tested the hypothesis that natural densities of non-native bullfrog tadpoles (Lithobates catesbeianus) and native Woodhouse's toad tadpoles (Anaxyrus woodhousii) have dissimilar effects on aquatic ecosystem processes because of differences in grazing and nutrient recycling (excretion and egestion). I measured bullfrog and Woodhouse's carbon, nitrogen, and phosphorus nutrient recycling rates. Then, I determined the impact of tadpole grazing on periphyton biomass (chlorophyll a) during a 39-day mesocosm experiment. Using the same experiment, I also quantified the effect of tadpole grazing and nutrient excretion on periphyton net primary production (NPP). Lastly I measured how dissolved and particulate nutrient concentrations and respiration rates changed in the presence of the two tadpole species. Per unit biomass, I found that bullfrog and Woodhouse's tadpoles excreted nitrogen and phosphorus at similar rates, though Woodhouse's tadpoles egested more carbon, nitrogen, and phosphorus. However, bullfrogs recycled nutrients at higher N:C and N:P ratios. Tadpole excretion did not cause a detectable change in dissolved nutrient concentrations. However, the percent phosphorus in mesocosm detritus was significantly higher in both tadpole treatments, compared to a tadpole-free control. Neither tadpole species decreased periphyton biomass through grazing, although bullfrog nutrient excretion increased areal NPP. This result was due to higher biomass, not higher biomass-specific productivity. Woodhouse's tadpoles significantly decreased respiration in the mesocosm detritus, while bullfrog tadpoles had no effect. This research highlights functional differences between species by showing non-native bullfrog tadpoles and native Woodhouse's tadpoles may have different effects on arid, aquatic ecosystems. Specifically, it indicates bullfrog introductions may alter primary productivity and particulate nutrient dynamics.

ContributorsGreene, Robin (Author) / Sabo, John L (Thesis advisor) / Grimm, Nancy (Committee member) / Elser, James J (Committee member) / Arizona State University (Publisher)
Created2015
149941-Thumbnail Image.png
Description
There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of

There is increasing evidence that ovarian status influcences behavioral phenotype in workers of the honey bee Apis mellifera. Honey bee workers demonstrate a complex division of labor. Young workers perform in-hive tasks (e.g. brood care), while older bees perform outside tasks (e.g. foraging for food). This age correlated division of labor is known as temporal polyethism. Foragers demonstrate further division of labor with some bees biasing collection towards protein (pollen) and others towards carbohydrates (nectar). The Reproductive Ground-plan Hypothesis proposes that the ovary plays a regulatory role in foraging division of labor. European honey bee workers that have been selectively bred to store larger amounts of pollen (High strain) also have a higher number of ovarioles per ovary than workers from strains bred to store less pollen (Low strain). High strain bees also initiate foraging earlier than Low strain bees. The relationship between ovariole number and foraging behavior is also observed in wild-type Apis mellifera and Apis cerana: pollen-biased foragers have more ovarioles than nectar-biased foragers. In my first study, I investigated the pre-foraging behavioral patterns of the High and Low strain bees. I found that High strain bees progress through the temporal polyethism at a faster rate than Low strain bees. To ensure that the observed relationship between the ovary and foraging bias is not due to associated separate genes for ovary size and foraging behavior, I investigated foraging behavior of African-European backcross bees. The backcross breeding program was designed to break potential gene associations. The results from this study demonstrated the relationship between the ovary and foraging behavior, supporting the proposed causal linkage between reproductive development and behavioral phenotype. The final study was designed to elucidate a regulatory mechanism that links ovariole number with sucrose sensitivity, and loading decisions. I measured ovariole number, sucrose sensitivity and sucrose solution load size using a rate-controlled sucrose delivery system. I found an interaction effect between ovariole number and sucrose sensitivity for sucrose solution load size. This suggests that the ovary impacts carbohydrate collection through modulation of sucrose sensitivity. Because nectar and pollen collection are not independent, this would also impact protein collection.
ContributorsSiegel, Adam J (Author) / Page, Jr., Robert E (Thesis advisor) / Hamilton, Andrew L. (Committee member) / Brent, Colin S (Committee member) / Amdam, Gro V (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2011
150030-Thumbnail Image.png
Description
The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However,

The elaborate signals of animals are often costly to produce and maintain, thus communicating reliable information about the quality of an individual to potential mates or competitors. The properties of the sensory systems that receive signals can drive the evolution of these signals and shape their form and function. However, relatively little is known about the ecological and physiological constraints that may influence the development and maintenance of sensory systems. In the house finch (Carpodacus mexicanus) and many other bird species, carotenoid pigments are used to create colorful sexually selected displays, and their expression is limited by health and dietary access to carotenoids. Carotenoids also accumulate in the avian retina, protecting it from photodamage and tuning color vision. Analogous to plumage carotenoid accumulation, I hypothesized that avian vision is subject to environmental and physiological constraints imposed by the acquisition and allocation of carotenoids. To test this hypothesis, I carried out a series of field and captive studies of the house finch to assess natural variation in and correlates of retinal carotenoid accumulation and to experimentally investigate the effects of dietary carotenoid availability, immune activation, and light exposure on retinal carotenoid accumulation. Moreover, through dietary manipulations of retinal carotenoid accumulation, I tested the impacts of carotenoid accumulation on visually mediated foraging and mate choice behaviors. My results indicate that avian retinal carotenoid accumulation is variable and significantly influenced by dietary carotenoid availability and immune system activity. Behavioral studies suggest that retinal carotenoid accumulation influences visual foraging performance and mediates a trade-off between color discrimination and photoreceptor sensitivity under dim-light conditions. Retinal accumulation did not influence female choice for male carotenoid-based coloration, indicating that a direct link between retinal accumulation and sexual selection for coloration is unlikely. However, retinal carotenoid accumulation in males was positively correlated with their plumage coloration. Thus, carotenoid-mediated visual health and performance or may be part of the information encoded in sexually selected coloration.
ContributorsToomey, Matthew (Author) / McGraw, Kevin J. (Thesis advisor) / Deviche, Pierre (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Verrelli, Brian (Committee member) / Arizona State University (Publisher)
Created2011
150474-Thumbnail Image.png
Description
Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult

Conditions during development can shape the expression of traits at adulthood, a phenomenon called developmental plasticity. In this context, factors such as nutrition or health state during development can affect current and subsequent physiology, body size, brain structure, ornamentation, and behavior. However, many of the links between developmental and adult phenotype are poorly understood. I performed a series of experiments using a common molecular currency - carotenoid pigments - to track somatic and reproductive investments through development and into adulthood. Carotenoids are red, orange, or yellow pigments that: (a) animals must acquire from their diets, (b) can be physiologically beneficial, acting as antioxidants or immunostimulants, and (c) color the sexually attractive features (e.g., feathers, scales) of many animals. I studied how carotenoid nutrition and immune challenges during ontogeny impacted ornamental coloration and immune function of adult male mallard ducks (Anas platyrhynchos). Male mallards use carotenoids to pigment their yellow beak, and males with more beaks that are more yellow are preferred as mates, have increased immune function, and have higher quality sperm. In my dissertation work, I established a natural context for the role that carotenoids and body condition play in the formation of the adult phenotype and examined how early-life experiences, including immune challenges and dietary access to carotenoids, affect adult immune function and ornamental coloration. Evidence from mallard ducklings in the field showed that variation in circulating carotenoid levels at hatch are likely driven by maternal allocation of carotenoids, but that carotenoid physiology shifts during the subsequent few weeks to reflect individual foraging habits. In the lab, adult beak color expression and immune function were more tightly correlated with body condition during growth than body condition during subsequent stages of development or adulthood. Immune challenges during development affected adult immune function and interacted with carotenoid physiology during adulthood, but did not affect adult beak coloration. Dietary access to carotenoids during development, but not adulthood, also affected adult immune function. Taken together, these results highlight the importance of the developmental stage in shaping certain survival-related traits (i.e., immune function), and lead to further questions regarding the development of ornamental traits.
ContributorsButler, Michael (Author) / McGraw, Kevin J. (Thesis advisor) / Chang, Yung (Committee member) / Deviche, Pierre (Committee member) / DeNardo, Dale (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
150734-Thumbnail Image.png
Description
Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from

Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from such studies. In the genus Habronattus, females are drab and cryptic while males are brilliantly colored, displaying some of these colors to females during elaborate courtship dances. Here I test multiple hypotheses for the control and function of male color. In the field, I found that Habronattus males indiscriminately court any female they encounter (including other species), so I first examined the role that colors play in species recognition. I manipulated male colors in H. pyrrithrix and found that while they are not required for species recognition, the presence of red facial coloration improves courtship success, but only if males are courting in the sun. Because light environment affects transmission of color signals, the multi-colored displays of males may facilitate communication in variable and unpredictable environments. Because these colors can be costly to produce and maintain, they also have the potential to signal reliable information about male quality to potential female mates. I found that both red facial and green leg coloration is condition dependent in H. pyrrithrix and thus has the potential to signal quality. Yet, surprisingly, this variation in male color does not appear to be important to females. Males of many Habronattus species also exhibit conspicuous markings on the dorsal surface of their abdomens that are not present in females and are oriented away from females during courtship. In the field, I found that these markings are paired with increased leg-waving behavior in a way that resembles the pattern and behavior of wasps; this may provide protection by exploiting the aversions of predators. My data also suggest that different activity levels between the sexes have placed different selection pressures on their dorsal color patterns. Overall, these findings challenge some of the traditional ways that we think about color signaling and provide novel insights into the evolution of animal coloration.
ContributorsTaylor, Lisa Anne (Author) / McGraw, Kevin J. (Thesis advisor) / Clark, David L. (Committee member) / Johnson, James C. (Committee member) / Alcock, John (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2012