Matching Items (28)

128028-Thumbnail Image.png

Photon noise from chaotic and coherent millimeter-wave sources measured with horn-coupled, aluminum lumped-element kinetic inductance detectors

Description

We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to

We report photon-noise limited performance of horn-coupled, aluminum lumped-element kinetic inductance detectors at millimeter wavelengths. The detectors are illuminated by a millimeter-wave source that uses an active multiplier chain to produce radiation between 140 and 160 GHz. We feed the multiplier with either amplified broadband noise or a continuous-wave tone from a microwave signal generator. We demonstrate that the detector response over a 40 dB range of source power is well-described by a simple model that considers the number of quasiparticles. The detector noise-equivalent power (NEP) is dominated by photon noise when the absorbed power is greater than approximately 1 pW, which corresponds to NEP ≈ 2 × 10[superscript −17] W Hz[superscript −1/2], referenced to absorbed power. At higher source power levels, we observe the relationships between noise and power expected from the photon statistics of the source signal: NEP ∝ P for broadband (chaotic) illumination and NEP ∝ P[superscript 1/2] for continuous-wave (coherent) illumination.

Contributors

Agent

Created

Date Created
  • 2016-02-25

134320-Thumbnail Image.png

Mechanical Design for TolTEC Optics

Description

The following paper discusses the validation of the TolTEC optical design along with a progress report regarding the design of the optical mounting system. Solidworks and Zemax were used in

The following paper discusses the validation of the TolTEC optical design along with a progress report regarding the design of the optical mounting system. Solidworks and Zemax were used in conjunction to model the proposed optics designs. The final optical design was selected through extensive CAD modeling and testing within the Large Millimeter Telescope receiver room. The TolTEC optics can be divided into two arrays, one comprised of the warm mirrors and the second, cryogenically-operated cold mirrors. To ensure structural stability and optical performance, the mechanical design of these systems places a heavy emphasis on rigidity. This is done using a variety of design techniques that restrict motion along the necessary degrees of freedom and maximize moment of inertia while minimizing weight. Work will resume on this project in the Fall 2017 semester.

Contributors

Agent

Created

Date Created
  • 2017-05

135303-Thumbnail Image.png

Optics Plate Assembly for Balloon-borne Large Aperture Submillimeter Telescope (BLAST)

Description

Balloon-borne telescopes are an economic alternative to scientists seeking to study light compared to other ground- and space-based alternatives, such as the Keck Observatory and the Hubble Space Telescope. One

Balloon-borne telescopes are an economic alternative to scientists seeking to study light compared to other ground- and space-based alternatives, such as the Keck Observatory and the Hubble Space Telescope. One such balloon-borne telescope is the Balloon-borne Large Aperture Submillimeter Telescope, or simply BLAST. Arizona State University was tasked with assembling one of the primary optics plates for the telescope's next mission. This plate, detailed in the following paragraphs, is designed to detect and capture submillimeter wavelength light. This will help scientists understand the formation and early life of stars. Due to its highly sensitive nature detecting light, the optics plate had to be carefully assembled following a strict assembly and testing procedure. Initially, error tolerances for the mirrors and plate were developed using a computer model, later to be compared to measured values. The engineering decisions made throughout the process pertained to every aspect of the plate, from ensuring the compliance of the engineering drawings to the polishing of the mirrors for testing. The assembly procedure itself was verified at the conclusion using a coordinate measuring machine (CMM) to analyze whether or not the plate was within defined error tolerances mentioned above. This data was further visualized within the document to show that the assembly procedure of the BLAST optics plate was successful. The largest error margins seen were approximately one order of magnitude lower than their tolerated limits, reflecting good engineering judgement and care applied to the manufacturing process. The plate has since been shipped offsite to continue testing and the assembly team is confident it will perform well within expected parameters.

Contributors

Agent

Created

Date Created
  • 2016-05

135308-Thumbnail Image.png

Investigation and Testing of the Performance and Durability of Ultra Small Diameter Micro-machining Tools.

Description

The world of micro-tools and micro-machining is still being explored, and new manufacturing processes and tools are being developed by researchers and industry leaders alike. Many of the performance metrics

The world of micro-tools and micro-machining is still being explored, and new manufacturing processes and tools are being developed by researchers and industry leaders alike. Many of the performance metrics for ultra-small machining tools (like end mills) are still underdefined or are currently being determined. The objective of this investigation was to determine the performance and durability of the 15 micron (um) diameter micro tool manufactured by the company Performance Micro Tool (PMT). The performance of the tool was measured by the surface roughness that resulted from the micro end mill's tool path. The durability of the tool was measured by the overall linear distance cut by the end mill before complete tool failure. In total, two micro-tools were tested, and the performance and durability results were surprising and significant. The tools surpassed the initial expectations of immediate failure upon contact with the base model. The expectation of failure stemmed from the less than ideal testing conditions for the tools -- a milling machine not capable of ideal cutting parameters and imperfections in the base model manufacturing. In terms of durability, both tools survived the entire defined tool path; over 5,000 times the tool diameter, a comparable metric for industry macro tools. The performance of the end mills was spectacular, both toolpaths had average surface roughness values below 0.05um, which is lower than the industry standard for some of the highest cut quality. Ultimately, the consistent results from both tools encourages a deeper investigation into these micro-tools. The fact that both tools exceeded expectations means that an investigation of many more tools is worth the financial and time investment. A further investigation of a large number of micro-tools could yield a standardized metric for performance and durability for the 15um tools.

Contributors

Agent

Created

Date Created
  • 2016-05

133353-Thumbnail Image.png

Optical Response of a TiN Kinetic Inductance Detector (KID)

Description

This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University

This research compares shifts in a SuperSpec titanium nitride (TiN) kinetic inductance detector's (KID's) resonant frequency with accepted models for other KIDs. SuperSpec, which is being developed at the University of Colorado Boulder, is an on-chip spectrometer designed with a multiplexed readout with multiple KIDs that is set up for a broadband transmission of these measurements. It is useful for detecting radiation in the mm and sub mm wavelengths which is significant since absorption and reemission of photons by dust causes radiation from distant objects to reach us in infrared and far-infrared bands. In preparation for testing, our team installed stages designed previously by Paul Abers and his group into our cryostat and designed and installed other parts necessary for the cryostat to be able to test devices on the 250 mK stage. This work included the design and construction of additional parts, a new setup for the wiring in the cryostat, the assembly, testing, and installation of several stainless steel coaxial cables for the measurements through the devices, and other cryogenic and low pressure considerations. The SuperSpec KID was successfully tested on this 250 mK stage thus confirming that the new setup is functional. Our results are in agreement with existing models which suggest that the breaking of cooper pairs in the detector's superconductor which occurs in response to temperature, optical load, and readout power will decrease the resonant frequencies. A negative linear relationship in our results appears, as expected, since the parameters are varied only slightly so that a linear approximation is appropriate. We compared the rate at which the resonant frequency responded to temperature and found it to be close to the expected value.

Contributors

Agent

Created

Date Created
  • 2018-05

137153-Thumbnail Image.png

An Automated Test System for Terahertz Receiver Characterization

Description

An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel

An automated test system was developed to characterize detectors for the Kilopixel Array Pathfinder Project (KAPPa). KAPPa is an astronomy instrument that detects light at terahertz wavelengths using a 16-pixel heterodyne focal plane array. Although primarily designed for the KAPPa receiver, the test system can be used with other instruments to automate tests that might be tedious and time-consuming by hand. Mechanical components of the test setup include an adjustable structure of aluminum t-slot framing that supports a rotating chopper. Driven by a stepper motor, the chopper alternates between blackbodies at room temperature and 77 K. The cold load consists of absorbing material submerged in liquid nitrogen in an open Styrofoam cooler. Scripts written in Matlab and Python control the mechanical system, interface with receiver components, and process data. To calculate the equivalent noise temperature of a receiver, the y-factor method is used. Test system operation was verified by sweeping the local oscillator frequency and power level for two room temperature Schottky diode receivers from Virginia Diodes, Inc. The test system was then integrated with the KAPPa receiver, providing a low cost, simple, adaptable means to measure noise with minimal user intervention.

Contributors

Agent

Created

Date Created
  • 2014-05

133428-Thumbnail Image.png

The History and Application of Optical Communications in Deep Space

Description

Optical Communications are at a high point of interest by the space engineering community. After successful projects like the Lunar Laser Communications Demonstration (LLCD), NASA has become interested in augmenting

Optical Communications are at a high point of interest by the space engineering community. After successful projects like the Lunar Laser Communications Demonstration (LLCD), NASA has become interested in augmenting their current Deep Space Network (DSN) with optical communication links. One such link is Deep Space Optical Communications (DSOC) which will be launching with the Psyche mission. To gain a full understanding of the advantages of this network, this thesis will go over the history and benefits of optical communications both on Earth and in space. This thesis will then go in depth on NASAs DSOC project through an algorithmic implementation of the communications channel.

Contributors

Agent

Created

Date Created
  • 2018-05

136912-Thumbnail Image.png

Searching for Stellar Outflow in the R Coronae Australis Region

Description

Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+

Using data from the Arizona Radio Observatory Submillimeter Telescope, we have studied the active, star-forming region of the R Coronae Australis molecular cloud in 12CO (2-1), 13CO (2-1), and HCO+ (3-2). We baselined and mapped the data using CLASS. It was then used to create integrated intensity, outflow, and centroid velocity maps in IDL. These clearly showed the main large outflow, and then we identified a few other possible outflows.

Contributors

Agent

Created

Date Created
  • 2014-05

129530-Thumbnail Image.png

First observation of the thermal Sunyaev-Zel'dovich effect with kinetic inductance detectors

Description

Context. Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zel’dovich (tSZ) effect have proven to be

Context. Clusters of galaxies provide valuable information on the evolution of the Universe and large scale structures. Recent cluster observations via the thermal Sunyaev-Zel’dovich (tSZ) effect have proven to be a powerful tool to detect and study them. In this context, high resolution tSZ observations (~tens of arcsec) are of particular interest to probe intermediate and high redshift clusters.
Aims. Observations of the tSZ effect will be carried out with the millimeter dual-band NIKA2 camera, based on kinetic inductance detectors (KIDs) to be installed at the IRAM 30-m telescope in 2015. To demonstrate the potential of such an instrument, we present tSZ observations with the NIKA camera prototype, consisting of two arrays of 132 and 224 detectors that observe at 140 and 240 GHz with a 18.5 and 12.5 arcsec angular resolution, respectively.
Methods. The cluster RX J1347.5-1145 was observed simultaneously at 140 and 240 GHz. We used a spectral decorrelation technique to remove the atmospheric noise and obtain a map of the cluster at 140 GHz. The efficiency of this procedure has been characterized through realistic simulations of the observations.
Results. The observed 140 GHz map presents a decrement at the cluster position consistent with the tSZ nature of the signal. We used this map to study the pressure distribution of the cluster by fitting a gNFW model to the data. Subtracting this model from the map, we confirm that RX J1347.5-1145 is an ongoing merger, which confirms and complements previous tSZ and X-ray observations.
Conclusions. For the first time, we demonstrate the tSZ capability of KID based instruments. The NIKA2 camera with ~5000 detectors and a 6.5 arcmin field of view will be well-suited for in-depth studies of the intra cluster medium in intermediate to high redshifts, which enables the characterization of recently detected clusters by the Planck satellite.

Contributors

Agent

Created

Date Created
  • 2014-09-01

132777-Thumbnail Image.png

Frequency–Modulated Continuous–Wave Millimeter–Band Radar for Volcanic Ash Detection

Description

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot

The use of conventional weather radar in vulcanology leads to two problems: the radars often use wavelengths which are too long to detect the fine ash particles, and they cannot be field–adjusted to fit the wide variety of eruptions. Thus, to better study these geologic processes, a new radar must be developed that is easily reconfigurable to allow for flexibility and can operate at sufficiently short wavelengths.

This thesis investigates how to design a radar using a field–programmable gate array board to generate the radar signal, and process the returned signal to determine the distance and concentration of objects (in this case, ash). The purpose of using such a board lies in its reconfigurability—a design can (relatively easily) be adjusted, recompiled, and reuploaded to the hardware with none of the cost or time overhead required of a standard weather radar.

The design operates on the principle of frequency–modulated continuous–waves, in which the output signal frequency changes as a function of time. The difference in transmit and echo frequencies determines the distance of an object, while the magnitude of a particular difference frequency corresponds to concentration. Thus, by viewing a spectrum of frequency differences, one is able to see both the concentration and distances of ash from the radar.

The transmit signal data was created in MATLAB®, while the radar was designed with MATLAB® Simulink® using hardware IP blocks and implemented on the ROACH2 signal processing hardware, which utilizes a Xilinx® Virtex®–6 chip. The output is read from a computer linked to the hardware through Ethernet, using a Python™ script. Testing revealed minor flaws due to the usage of lower–grade components in the prototype. However, the functionality of the proposed radar design was proven, making this approach to radar a promising path for modern vulcanology.

Contributors

Agent

Created

Date Created
  • 2019-05