Matching Items (2)

134612-Thumbnail Image.png

Cryogenic Testing of Microwave Kinetic Inductance Detectors (MKIDs)

Description

We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of

We designed and constructed a cryostat setup for MKID detectors. The goal for the cryostat is to have four stages: 40K, 4K, 1K and 250mK. Prior to the start of my thesis, the cryostat was reaching 70K and 9K on the first and second stages respectively. During the first semester of my thesis I worked on getting the second stage to reach below 4K such that it would be cold enough to add a sorption fridge to reach 250mK. Various parts were machined for the cryostat and some tweaks were made to existing pieces. The largest changes were we thinned our stainless steel supports from 2mm to 10mil and we added roughly 6-10 layers of multi-layer insulation to the first and second stages. Our result was that we now reach temperatures of 36K and 2.6K on the first and second stages respectively. Next we added the sorption fridge to the 4K stage by having the 4K stage remachined to allow the sorption fridge to be mounted to the stage. Then I designed a final, two stage, setup for the 1K and 250mK stages that has maximum capabilities of housing a six inch wafer for testing. The design was sent to a machinist, but the parts were unfinished by the end of my thesis, so the parts and stage were not tested. Once the cryostat was fully tested and proven to reach the necessary temperatures, preliminary testing was done on a Microwave Kinetic Inductance Detector (MKID) provided by Stanford. Data was collected on the resonance and quality factor as they shifted with final stage temperature (5K to 285mK) and with input power (60dB to 15dB). The data was analyzed and the results agreed within expectations, as the resonant frequency and quality factor shifted down with increased temperature on the MKID. Finally, a noise characterization setup was designed to test the noise of devices, but was not fully implemented.

Contributors

Agent

Created

Date Created
  • 2017-05

157735-Thumbnail Image.png

The study of astronomical transients in the infrared

Description

Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic

Several key, open questions in astrophysics can be tackled by searching for and

mining large datasets for transient phenomena. The evolution of massive stars and

compact objects can be studied over cosmic time by identifying supernovae (SNe) and

gamma-ray bursts (GRBs) in other galaxies and determining their redshifts. Modeling

GRBs and their afterglows to probe the jets of GRBs can shed light on the emission

mechanism, rate, and energetics of these events.

In Chapter 1, I discuss the current state of astronomical transient study, including

sources of interest, instrumentation, and data reduction techniques, with a focus

on work in the infrared. In Chapter 2, I present original work published in the

Proceedings of the Astronomical Society of the Pacific, testing InGaAs infrared

detectors for astronomical use (Strausbaugh, Jackson, and Butler 2018); highlights of

this work include observing the exoplanet transit of HD189773B, and detecting the

nearby supernova SN2016adj with an InGaAs detector mounted on a small telescope

at ASU. In Chapter 3, I discuss my work on GRB jets published in the Astrophysical

Journal Letters, highlighting the interesting case of GRB 160625B (Strausbaugh et al.

2019), where I interpret a late-time bump in the GRB afterglow lightcurve as evidence

for a bright-edged jet. In Chapter 4, I present a look back at previous years of

RATIR (Re-ionization And Transient Infra-Red Camera) data, with an emphasis on

the efficiency of following up GRBs detected by the Fermi Space Telescope, before

some final remarks and brief discussion of future work in Chapter 5.

Contributors

Agent

Created

Date Created
  • 2019