Matching Items (8)
150394-Thumbnail Image.png
Description
Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising

Anti-retroviral drugs and AIDS prevention programs have helped to decrease the rate of new HIV-1 infections in some communities, however, a prophylactic vaccine is still needed to control the epidemic world-wide. Despite over two decades of research, a vaccine against HIV-1 remains elusive, although recent clinical trials have shown promising results. Recent successes have focused on highly conserved, mucosally-targeted antigens within HIV-1 such as the membrane proximal external region (MPER) of the envelope protein, gp41. MPER has been shown to play critical roles in the viral mucosal transmission, though this peptide is not immunogenic on its own. Gag is a structural protein configuring the enveloped virus particles, and has been suggested to constitute a target of the cellular immunity potentially controlling the viral load. It was hypothesized that HIV-1 enveloped virus-like particles (VLPs) consisting of Gag and a deconstructed form of gp41 comprising the MPER, transmembrane, and cytoplasmic domains (dgp41) could be expressed in plants. Plant-optimized HIV-1 genes were constructed and expressed in Nicotiana benthamiana by stable transformation, or transiently using a tobacco mosaic virus-based expression system or a combination of both. Results of biophysical, biochemical and electron microscopy characterization demonstrated that plant cells could support not only the formation of HIV-1 Gag VLPs, but also the accumulation of VLPs that incorporated dgp41. These particles were purified and utilized in mice immunization experiments. Prime-boost strategies combining systemic and mucosal priming with systemic boosting using two different vaccine candidates (VLPs and CTB-MPR - a fusion of MPER and the B-subunit of cholera toxin) were administered to BALB/c mice. Serum antibody responses against both the Gag and gp41 antigens could be elicited in mice systemically primed with VLPs and these responses could be recalled following systemic boosting with VLPs. In addition, mucosal priming with VLPs allowed for a robust boosting response against Gag and gp41 when boosted with either candidate. Functional assays of these antibodies are in progress to test the antibodies' effectiveness in neutralizing and preventing mucosal transmission of HIV-1. This immunogenicity of plant-based Gag/dgp41 VLPs represents an important milestone on the road towards a broadly-efficacious and inexpensive subunit vaccine against HIV-1.
ContributorsKessans, Sarah (Author) / Mor, Tsafrir S (Thesis advisor) / Matoba, Nobuyuki (Committee member) / Mason, Hugh (Committee member) / Hogue, Brenda (Committee member) / Fromme, Petra (Committee member) / Arizona State University (Publisher)
Created2011
156067-Thumbnail Image.png
Description
Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene.

Plants are a promising upcoming platform for production of vaccine components and other desirable pharmaceutical proteins that can only, at present, be made in living systems. The unique soil microbe Agrobacterium tumefaciens can transfer DNA to plants very efficiently, essentially turning plants into factories capable of producing virtually any gene. While genetically modified bacteria have historically been used for producing useful biopharmaceuticals like human insulin, plants can assemble much more complicated proteins, like human antibodies, that bacterial systems cannot. As plants do not harbor human pathogens, they are also safer alternatives than animal cell cultures. Additionally, plants can be grown very cheaply, in massive quantities.

In my research, I have studied the genetic mechanisms that underlie gene expression, in order to improve plant-based biopharmaceutical production. To do this, inspiration was drawn from naturally-occurring gene regulatory mechanisms, especially those from plant viruses, which have evolved mechanisms to co-opt the plant cellular machinery to produce high levels of viral proteins. By testing, modifying, and combining genetic elements from diverse sources, an optimized expression system has been developed that allows very rapid production of vaccine components, monoclonal antibodies, and other biopharmaceuticals. To improve target gene expression while maintaining the health and function of the plants, I identified, studied, and modified 5’ untranslated regions, combined gene terminators, and a nuclear matrix attachment region. The replication mechanisms of a plant geminivirus were also studied, which lead to additional strategies to produce more toxic biopharmaceutical proteins. Finally, the mechanisms employed by a geminivirus to spread between cells were investigated. It was demonstrated that these movement mechanisms can be functionally transplanted into a separate genus of geminivirus, allowing modified virus-based gene expression vectors to be spread between neighboring plant cells. Additionally, my work helps shed light on the basic genetic mechanisms employed by all living organisms to control gene expression.
ContributorsDiamos, Andy (Author) / Mason, Hugh S (Thesis advisor) / Mor, Tsafrir (Committee member) / Hogue, Brenda (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2017
156671-Thumbnail Image.png
Description
Zika virus (ZIKV) outbreaks have been linked to several neurological pathologies in the developing fetus, which can progress to spontaneous abortion and microcephaly in newborns whose mothers were infected with the virus during pregnancy. ZIKV has also been correlated with neurological complications in adults such as Guillain-Barré Syndrome (GBS). ZIKV

Zika virus (ZIKV) outbreaks have been linked to several neurological pathologies in the developing fetus, which can progress to spontaneous abortion and microcephaly in newborns whose mothers were infected with the virus during pregnancy. ZIKV has also been correlated with neurological complications in adults such as Guillain-Barré Syndrome (GBS). ZIKV outbreaks often occur in low income areas with limited access to healthcare. Therefore, there is a need to create a low-cost preventative vaccine against the virus. Mature ZIKV particles contain a lipid bilayer, a positive sense single stranded RNA genome and three structural proteins: the envelope (E), membrane (M) and capsid (C) proteins. Congruently, to other members of the Flaviviridae family, ZIKV proteins are synthesized as a polyprotein precursor which needs to be processed to release the mature structural and non-structural viral proteins. Past studies have determined the ZIKV precursor protein is cleaved by a host furin protease which separates the Pr peptide and the M protein, while the host signal peptidase separates the M and E protein. Processing is important for correct folding of the E protein. In turn, the most important neutralizing antibodies upon infection are directed against epitopes of the E protein. In this work, we used a Bean Yellow Dwarf Viral vector system to transiently express, in Nicotiana benthamiana plants, a portion of the ZIKV polyprotein encoding the Pr, M and E proteins. I further demonstrate that plants can proteolytically process the polyprotein to yield the two integral membrane proteins M and E. These proteins can be shown to co-partition into a soluble membrane-particulate fraction, consistent with formation of enveloped virus-like particles (VLPs). This work provides the first step in creating a low-cost sustainable plant-based production system of ZIKV VLPs that can be explored as a potential component 0f a low-cost prophylactic vaccine against ZIKV.
ContributorsDi Palma, Michelle Pina (Author) / Mor, Tsafrir S (Thesis advisor) / Mason, Hugh S (Committee member) / Blattman, Joseph N (Committee member) / Arizona State University (Publisher)
Created2018
154855-Thumbnail Image.png
Description
The HIV-1 pandemic continues to cause millions of new infections and AIDS-related deaths each year, and a majority of these occur in regions of the world with limited access to antiretroviral therapy. Therefore, an HIV-1 vaccine is still desperately needed. The most successful HIV-1 clinical trial to date used a

The HIV-1 pandemic continues to cause millions of new infections and AIDS-related deaths each year, and a majority of these occur in regions of the world with limited access to antiretroviral therapy. Therefore, an HIV-1 vaccine is still desperately needed. The most successful HIV-1 clinical trial to date used a non-replicating canarypox viral vector and protein boosting, yet its modest efficacy left room for improvement. Efforts to derive novel vectors which can be both safe and immunogenic, have spawned a new era of live, viral vectors. One such vaccinia virus vector, NYVAC-KC, was specifically designed to replicate in humans and had several immune modulators deleted to improve immunogenicity and reduce pathogenicity. Two NYVAC-KC vectors were generated: one expressing the Gag capsid, and one with deconstructed-gp41 (dgp41), which contains an important neutralizing antibody target, the membrane proximal external region (MPER). These vectors were combined with HIV-1 Gag/dgp41 virus-like particles (VLPs) produced in the tobacco-relative Nicotiana benthamiana. Different plant expression vectors were compared in an effort to improve yield. A Geminivirus-based vector was shown to increase the amount of MPER present in VLPs, thus potentially enhancing immunogenicity. Furthermore, these VLPs were shown to interact with the innate immune system through Toll-like receptor (TLR) signaling, which activated antigen presenting cells to induce a Th2-biased response in a TLR-dependent manner. Furthermore, expression of Gag and dgp41 in NYVAC-KC vectors resulted in activation of antiviral signaling pathways reliant on TBK1/IRF3, which necessitated the use of higher doses in mice to match the immunogenicity of wild-type viral vectors. VLPs and NYVAC-KC vectors were tested in mice, ultimately showing that the best antibody and Gag-specific T cell responses were generated when both components were administered simultaneously. Thus, plant-produced VLPs and poxvirus vectors represent a highly immunogenic HIV-1 vaccine candidate that warrants further study.
ContributorsMeador, Lydia Rebecca (Author) / Mor, Tsafrir S (Thesis advisor) / Jacobs, Bertram L (Thesis advisor) / Blattman, Joseph N (Committee member) / Mason, Hugh S (Committee member) / Arizona State University (Publisher)
Created2016
149404-Thumbnail Image.png
Description
Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used

Ebola hemorrhagic fever (EHF) is a severe and often fatal disease in human and nonhuman primates, caused by the Ebola virus. Approximately 30 years after the first epidemic, there is no vaccine or therapeutic medication approved to counter the Ebola virus. In this dissertation, a geminiviral replicon system was used to produce Ebola immune complex (EIC) in plant leaves and tested it as an Ebola vaccine. The EIC was produced in Nicotiana benthamiana leaves by fusing Ebola virus glycoprotein (GP1) to the C-terminus of heavy chain of 6D8 monoclonal antibody (mAb), which is specific to the 6D8 epitope of GP1, and co-expressing the fusion with the light chain of 6D8 mAb. EIC was purified by ammonium sulfate precipitation and protein A or protein G affinity chromatography. EIC was shown to be immunogenic in mice, but the level of antibody against Ebola virus was not sufficient to protect the mice from lethal the Ebola challenge. Hence, different adjuvants were tested in order to improve the immunogenicity of the EIC. Among several adjuvants that we used, Poly(I:C), which is a synthetic analog of double-stranded ribonucleic acid that can interact with a Toll-like receptor 3, strongly increased the efficacy of our Ebola vaccine. The mice immunized with EIC co-administered with Poly(I:C) produced high levels of neutralizing anti-Ebola IgG, and 80% of the mice were protected from the lethal Ebola virus challenge. Moreover, the EIC induced a predominant T-helper type 1 (Th1) response, whereas Poly(I:C) co-delivered with the EIC stimulated a mixed Th1/Th2 response. This result suggests that the protection against lethal Ebola challenge requires both Th1 and Th2 responses. In conclusion, this study demonstrated that the plant-produced EIC co-delivered with Poly(I:C) induced strong and protective immune responses to the Ebola virus in mice. These results support plant-produced EIC as a good vaccine candidate against the Ebola virus. It should be pursued further in primate studies, and eventually in clinical trials.
ContributorsPhoolcharoen, Waranyoo (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Thesis advisor) / Arntzen, Charles J. (Committee member) / Change, Yung (Committee member) / Ma, Julian (Committee member) / Arizona State University (Publisher)
Created2010
168416-Thumbnail Image.png
Description

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable,

Vaccines are one of the most effective ways of combating infectious diseases and developing vaccine platforms that can be used to produce vaccines can greatly assist in combating global public health threats. This dissertation focuses on the development and pre-clinical testing of vaccine platforms that are highly immunogenic, easily modifiable, economically viable to produce, and stable. These criteria are met by the recombinant immune complex (RIC) universal vaccine platform when produced in plants. The RIC platform is modeled after naturally occurring immune complexes that form when an antibody, a component of the immune system that recognizes protein structures or sequences, binds to its specific antigen, a molecule that causes an immune response. In the RIC platform, a well-characterized antibody is linked via its heavy chain, to an antigen tagged with the antibody-specific epitope. The RIC antibody binds to the epitope tags on other RIC molecules and forms highly immunogenic complexes. My research has primarily focused on the optimization of the RIC platform. First, I altered the RIC platform to enable an N-terminal antigenic fusion instead of the previous C-terminal fusion strategy. This allowed the platform to be used with antigens that require an accessible N-terminus. A mouse immunization study with a model antigen showed that the fusion location, either N-terminal or C-terminal, did not impact the immune response. Next, I studied a synergistic response that was seen upon co-delivery of RIC with virus-like particles (VLP) and showed that the synergistic response could be produced with either N-terminal or C-terminal RIC co-delivered with VLP. Since RICs are inherently insoluble due to their ability to form complexes, I also examined ways to increase RIC solubility by characterizing a panel of modified RICs and antibody-fusions. The outcome was the identification of a modified RIC that had increased solubility while retaining high immunogenicity. Finally, I modified the RIC platform to contain multiple antigenic insertion sites and explored the use of bioinformatic tools to guide the design of a broadly protective vaccine.

ContributorsPardhe, Mary (Author) / Mason, Hugh S (Thesis advisor) / Chen, Qiang (Committee member) / Mor, Tsafrir (Committee member) / Wilson, Melissa (Committee member) / Arizona State University (Publisher)
Created2021
153708-Thumbnail Image.png
Description
Cocaine abuse affects millions of people with disastrous medical and societal consequences. Despite this, there is still no FDA-approved treatment to decrease the likelihood of relapse in rehabilitated addicts, and acute cocaine toxicity (overdose) is only symptomatically treated. Studies have demonstrated a promising potential treatment option with the help of

Cocaine abuse affects millions of people with disastrous medical and societal consequences. Despite this, there is still no FDA-approved treatment to decrease the likelihood of relapse in rehabilitated addicts, and acute cocaine toxicity (overdose) is only symptomatically treated. Studies have demonstrated a promising potential treatment option with the help of the human serum enzyme butyrylcholinesterase (BChE), an enzyme capable of breaking down cocaine into biologically inactive side products. This activity of wild-type BChE, however, is relatively low. This prompted the design of variants of BChE which exhibit significantly improved catalytic activity against cocaine. Plants were used as a sustainable, scalable, affordable platform system to produce large amounts of human biologics such as these cocaine hydrolase variants of BChE. Using a tobacco relative, Nicotiana benthamiana, recombinant enzymes can be produced at quantities relevant to clinical use with desired kinetic properties. Next, the ability of the most promising plant-produced cocaine super hydrolase, pCocSH, to counter the lethal effects of cocaine overdose in vivo was tested. These studies revealed that this plant-produced enzyme can protect mice from an otherwise lethal dose of cocaine. Most excitingly, it was found that pCocSH can rescue mice from overdose when given immediately after the onset of cocaine-induced seizures. These studies provide in vitro and in vivo proof-of-principle for a promising plant-derived biologic to be used as a pharmacokinetic-based treatment for cocaine addiction-related diseases such as overdose.
ContributorsLarrimore, Katherine E (Author) / Mor, Tsafrir S (Thesis advisor) / Gaxiola, Roberto (Committee member) / Mason, Hugh S (Committee member) / Neisewander, Janet L (Committee member) / Arizona State University (Publisher)
Created2015
161233-Thumbnail Image.png
Description
Influenza is a deadly disease that poses a major threat to global health. The surface proteins of influenza A, the type most often associated with epidemics and pandemics, mutate at a very high frequency from season to season, reducing the efficacy of seasonal influenza vaccines. However, certain regions of these

Influenza is a deadly disease that poses a major threat to global health. The surface proteins of influenza A, the type most often associated with epidemics and pandemics, mutate at a very high frequency from season to season, reducing the efficacy of seasonal influenza vaccines. However, certain regions of these proteins are conserved between strains of influenza A, making them attractive targets for the development of a ‘universal’ influenza vaccine. One of these highly conserved regions is the ectodomain of the influenza matrix 2 protein (M2e). Studies have shown that M2e is poorly immunogenic on its own, but when properly adjuvanted it can be used to induce protective immune responses against many strains of influenza A. In this thesis, M2e was fused to a pair experimental ‘vaccine platforms’: an antibody fusion protein designed to assemble into a recombinant immune complex (RIC) and the hepatitis B core antigen (HBc) that can assemble into virus-like particles (VLP). The two antigens were produced in Nicotiana benthamiana plants through the use of geminiviral vectors and were subsequently evaluated in mouse trials. Mice were administered three doses of either the VLP alone or a 1:1 combination of the VLP and the RIC, and recipients of both the VLP and RIC exhibited endpoint anti-M2e antibody titers that were 2 to 3 times higher than mice that received the VLP alone. While IgG2a:IgG1 ratios, which can suggest the type of immune response (TH1 vs TH2) an antigen will elicit, were higher in mice vaccinated solely with the VLP, the higher overall titers are encouraging and demonstrate a degree of interaction between the RIC and VLP vaccines. Further research is necessary to determine the optimal balance of VLP and RIC to maximize IgG2a:IGg1 ratios as well as whether such interaction would be observed through the use of a variety of diverse antigens, though the results of other studies conducted in this lab suggests that this is indeed the case. The results of this study demonstrate not only the successful development of a promising new universal influenza A vaccine, but also that co-delivering different types of recombinant vaccines could reduce the total number of vaccine doses needed to achieve a protective immune response.
ContributorsFavre, Brandon Chetan (Author) / Mason, Hugh S (Thesis advisor) / Mor, Tsafrir (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2019