Matching Items (11)

128737-Thumbnail Image.png

Whole Blood Gene Expression Profiles in Insulin Resistant Latinos with the Metabolic Syndrome

Description

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis

Although insulin resistance in skeletal muscle is well-characterized, the role of circulating whole blood in the metabolic syndrome phenotype is not well understood. We set out to test the hypothesis that genes involved in inflammation, insulin signaling and mitochondrial function would be altered in expression in the whole blood of individuals with metabolic syndrome. We further wanted to examine whether similar relationships that we have found previously in skeletal muscle exist in peripheral whole blood cells. All subjects (n=184) were Latino descent from the Arizona Insulin Resistance registry. Subjects were classified based on the metabolic syndrome phenotype according to the National Cholesterol Education Program’s Adult Treatment Panel III. Of the 184 Latino subjects in the study, 74 were classified with the metabolic syndrome and 110 were without. Whole blood gene expression profiling was performed using the Agilent 4x44K Whole Human Genome Microarray. Whole blood microarray analysis identified 1,432 probes that were altered in expression ≥1.2 fold and P<0.05 after Benjamini-Hochberg in the metabolic syndrome subjects. KEGG pathway analysis revealed significant enrichment for pathways including ribosome, oxidative phosphorylation and MAPK signaling (all Benjamini-Hochberg P<0.05). Whole blood mRNA expression changes observed in the microarray data were confirmed by quantitative RT-PCR. Transcription factor binding motif enrichment analysis revealed E2F1, ELK1, NF-kappaB, STAT1 and STAT3 significantly enriched after Bonferroni correction (all P<0.05). The results of the present study demonstrate that whole blood is a useful tissue for studying the metabolic syndrome and its underlying insulin resistance although the relationship between blood and skeletal muscle differs.

Contributors

Agent

Created

Date Created
  • 2013-12-17

128782-Thumbnail Image.png

Reproducibility of an HPLC-ESI-MS/MS Method for the Measurement of Stable-Isotope Enrichment of in Vivo-Labeled Muscle ATP Synthase Beta Subunit

Description

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R[superscript 2] = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase[subscript 134-143] peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase[subscript 134-143] peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R[superscript 2] = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase[subscript 134-143] peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase[subscript 134-143] peptide.

Contributors

Agent

Created

Date Created
  • 2011-10-12

128791-Thumbnail Image.png

Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit

Description

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase,

Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m[superscript 2]) and lean (BMI, 22±1 kg/m[superscript 2]) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h[superscript -1]) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = – 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.

Contributors

Agent

Created

Date Created
  • 2016-08-17

128981-Thumbnail Image.png

Physical activity and FTO genotype by physical activity interactive influences on obesity

Description

Background
Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect

Background
Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive effects between FTO variants and PA on measures of adiposity in Latinos.
Results
After controlling for age and sex, participants who did not engage in regular PA exhibited higher BMI, fat mass, HC, and WC with statistical significance (P < 0.001). Although significant associations between the three FTO genotypes and adiposity measures were found, none of the FTO genotype by PA interaction assessments revealed nominally significant associations. However, several of such interactive influences exhibited considerable trend towards association.
Conclusions
These data suggest that adiposity measures are associated with PA and FTO variants in Latinos, but the impact of their interactive influences on these obesity measures appear to be minimal. Future studies with large sample sizes may help to determine whether individuals with specific FTO variants exhibit differential responses to PA interventions.

Contributors

Agent

Created

Date Created
  • 2016-02-24

129039-Thumbnail Image.png

Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival

Description

Background
Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon

Background
Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon binding partners, such as ikaros and aiolos, and induce many cellular responses, including cytotoxicity to multiple myeloma (MM) cells. Nevertheless, it takes many days for MM cells to die after IMiD induced depletion of ikaros and aiolos and thus we searched for other cereblon binding partners that participate in IMiD cytotoxicity.
Methods
Cereblon binding partners were identified from a MM cell line expressing histidine-tagged cereblon by pulling down cereblon and its binding partners and verified by co-immunoprecipitation. IMiD effects were determined by western blot analysis, cell viability assay, microRNA array and apoptosis analysis.
Results
We identified argonaute 2 (AGO2) as a cereblon binding partner and found that the steady-state levels of AGO2 were regulated by cereblon. Upon treatment of IMiD-sensitive MM cells with lenalidomide, the steady-state levels of cereblon were significantly increased, whereas levels of AGO2 were significantly decreased. It has been reported that AGO2 plays a pivotal role in microRNA maturation and function. Interestingly, upon treatment of MM cells with lenalidomide, the steady-state levels of microRNAs were significantly altered. In addition, silencing of AGO2 in MM cells, regardless of sensitivity to IMiDs, significantly decreased the levels of AGO2 and microRNAs and massively induced cell death.
Conclusion
These results support the notion that the cereblon binding partner AGO2 plays an important role in regulating MM cell growth and survival and AGO2 could be considered as a novel drug target for overcoming IMiD resistance in MM cells.

Contributors

Agent

Created

Date Created
  • 2016-05-03

128873-Thumbnail Image.png

Gene and MicroRNA Expression Responses to Exercise; Relationship with Insulin Sensitivity

Description

Background
Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was

Background
Healthy individuals on the lower end of the insulin sensitivity spectrum also have a reduced gene expression response to exercise for specific genes. The goal of this study was to determine the relationship between insulin sensitivity and exercise-induced gene expression in an unbiased, global manner.
Methods and Findings
Euglycemic clamps were used to measure insulin sensitivity and muscle biopsies were done at rest and 30 minutes after a single acute exercise bout in 14 healthy participants. Changes in mRNA expression were assessed using microarrays, and miRNA analysis was performed in a subset of 6 of the participants using sequencing techniques. Following exercise, 215 mRNAs were changed at the probe level (Bonferroni-corrected P<0.00000115). Pathway and Gene Ontology analysis showed enrichment in MAP kinase signaling, transcriptional regulation and DNA binding. Changes in several transcription factor mRNAs were correlated with insulin sensitivity, including MYC, r=0.71; SNF1LK, r=0.69; and ATF3, r= 0.61 (5 corrected for false discovery rate). Enrichment in the 5’-UTRs of exercise-responsive genes suggested regulation by common transcription factors, especially EGR1. miRNA species of interest that changed after exercise included miR-378, which is located in an intron of the PPARGC1B gene.
Conclusions
These results indicate that transcription factor gene expression responses to exercise depend highly on insulin sensitivity in healthy people. The overall pattern suggests a coordinated cycle by which exercise and insulin sensitivity regulate gene expression in muscle.

Contributors

Agent

Created

Date Created
  • 2015-05-18

128922-Thumbnail Image.png

Changes in Pre- and Post-Exercise Gene Expression among Patients with Chronic Kidney Disease and Kidney Transplant Recipients

Description

Introduction
Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD) is an inflammatory

Introduction
Decreased insulin sensitivity blunts the normal increase in gene expression from skeletal muscle after exercise. In addition, chronic inflammation decreases insulin sensitivity. Chronic kidney disease (CKD) is an inflammatory state. How CKD and, subsequently, kidney transplantation affects skeletal muscle gene expression after exercise are unknown.
Methods
Study cohort: non-diabetic male/female 4/1, age 52±2 years, with end-stage CKD who underwent successful kidney transplantation. The following were measured both pre-transplant and post-transplant and compared to normals: Inflammatory markers, euglycemic insulin clamp studies determine insulin sensitivity, and skeletal muscle biopsies performed before and within 30 minutes after an acute exercise protocol. Microarray analyses were performed on the skeletal muscle using the 4x44K Whole Human Genome Microarrays. Since nuclear factor of activated T cells (NFAT) plays an important role in T cell activation and calcineurin inhibitors are mainstay immunosuppression, calcineurin/NFAT pathway gene expression was compared at rest and after exercise. Log transformation was performed to prevent skewing of data and regression analyses comparing measures pre- and post-transplant performed.
Result
Markers of inflammation significantly improved post-transplantation. Insulin infusion raised glucose disposal slightly lower post-transplant compared to pre-transplant, but not significantly, thus concluding differences in insulin sensitivity were similar. The overall pattern of gene expression in response to exercise was reduced both pre-and post-transplant compared to healthy volunteers. Although significant changes were observed among NFAT/Calcineurin gene at rest and after exercise in normal cohort, there were no significant differences comparing NFAT/calcineurin pathway gene expression pre- and post-transplant.
Conclusions
Despite an improvement in serum inflammatory markers, no significant differences in glucose disposal were observed post-transplant. The reduced skeletal muscle gene expression, including NFAT/calcineurin gene expression, in response to a single bout of exercise was not improved post-transplant. This study suggests that the improvements in inflammatory mediators post-transplant are unrelated to changes of NFAT/calcineurin gene expression.

Contributors

Agent

Created

Date Created
  • 2016-08-12

128899-Thumbnail Image.png

Effects of Acute Exposure to Increased Plasma Branched-Chain Amino Acid Concentrations on Insulin-Mediated Plasma Glucose Turnover in Healthy Young Subjects

Description

Background
Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between

Background
Plasma branched-chain amino acids (BCAA) are inversely related to insulin sensitivity of glucose metabolism in humans. However, currently, it is not known whether there is a cause-and-effect relationship between increased plasma BCAA concentrations and decreased insulin sensitivity.
Objective
To determine the effects of acute exposure to increased plasma BCAA concentrations on insulin-mediated plasma glucose turnover in humans.
Methods
Ten healthy subjects were randomly assigned to an experiment where insulin was infused at 40 mU/m2/min (40U) during the second half of a 6-hour intravenous infusion of a BCAA mixture (i.e., BCAA; N = 5) to stimulate plasma glucose turnover or under the same conditions without BCAA infusion (Control; N = 5). In a separate experiment, seven healthy subjects were randomly assigned to receive insulin infusion at 80 mU/m2/min (80U) in association with the above BCAA infusion (N = 4) or under the same conditions without BCAA infusion (N = 3). Plasma glucose turnover was measured prior to and during insulin infusion.
Results
Insulin infusion completely suppressed the endogenous glucose production (EGP) across all groups. The percent suppression of EGP was not different between Control and BCAA in either the 40U or 80U experiments (P > 0.05). Insulin infusion stimulated whole-body glucose disposal rate (GDR) across all groups. However, the increase (%) in GDR was not different [median (1st quartile – 3rd quartile)] between Control and BCAA in either the 40U ([199 (167–278) vs. 186 (94–308)] or 80 U ([491 (414–548) vs. 478 (409–857)] experiments (P > 0.05). Likewise, insulin stimulated the glucose metabolic clearance in all experiments (P < 0.05) with no differences between Control and BCAA in either of the experiments (P > 0.05).

Contributors

Agent

Created

Date Created
  • 2015-03-17

152123-Thumbnail Image.png

Towards a systems biology understanding of metabolic syndrome

Description

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.

Contributors

Agent

Created

Date Created
  • 2013

150818-Thumbnail Image.png

Mitochondrial physiology in avian and mammalian skeletal muscle

Description

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.

Contributors

Agent

Created

Date Created
  • 2012