Matching Items (18)
152787-Thumbnail Image.png
Description

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface has a profound impact on the intensity of the retroreflected light. In order to gain insight into how the glass beads provide retroreflection, an experiment was carried out to produce paint stripes with glass beads and measure the retroreflection. Samples were created at various application rates and embedment depths, in an attempt to verify the optimal embedment and observe the effect of application rate on retroreflection. The experiment was conducted using large, airport quality beads and small, road quality beads. Image analysis was used to calculate the degree to which beads were embedded and in an attempt to quantify bead distribution on the stripe surface. The results from the large beads showed that retroreflection was maximized when the beads were embedded approximately seventy percent by bead volume. The results also showed that as the application rate increased, the retroreflection increased, up to a point and then decreased. A model was developed to estimate the retroreflectivity given the amount of beads, bead spacing, and distribution of bead embedment. Results from the small beads were less conclusive, but did demonstrate that the larger beads are better at providing retroreflection. Avenues for future work in this area were identified as the experiment was conducted.

ContributorsStevens, Ryan David (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2014
153307-Thumbnail Image.png
Description

This study investigates the mastic level structure of asphalt concrete containing RAP materials. Locally sourced RAP material was screened and sieved to separate the coated fines (passing #200) from the remaining sizes. These binder coated fines were mixed with virgin filler at proportions commensurate with 0%, 10%, 30%, 50% and

This study investigates the mastic level structure of asphalt concrete containing RAP materials. Locally sourced RAP material was screened and sieved to separate the coated fines (passing #200) from the remaining sizes. These binder coated fines were mixed with virgin filler at proportions commensurate with 0%, 10%, 30%, 50% and 100% RAP dosage levels. Mastics were prepared with these blended fillers and a PG 64-22 binder at a filler content of 27% by volume. Rheological experiments were conducted on the resulting composites as well as the constituents, virgin binder, solvent extracted RAP binder. The results from the dynamic modulus experiments showed an expected increase in stiffness with increase in dosage levels. These results were used to model the hypothesized structure of the composite. The study presented discusses the different micromechanical models employed, their applicability and suitability to correctly predict the blended mastic composite. The percentage of blending between virgin and RAP binder estimated using Herve and Zaoui model decreased with increase in RAP content.

ContributorsGundla, Akshay (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2014
150365-Thumbnail Image.png
Description

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture,

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

ContributorsAlossta, Abdulaziz (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2011
150678-Thumbnail Image.png
Description

One of the main requirements of designing perpetual pavements is to determine the endurance limit of Hot Mix Asphalt (HMA). The purpose of this study was to validate the endurance limit for HMA using laboratory beam fatigue tests. A mathematical procedure was developed to determine the endurance limit of HMA

One of the main requirements of designing perpetual pavements is to determine the endurance limit of Hot Mix Asphalt (HMA). The purpose of this study was to validate the endurance limit for HMA using laboratory beam fatigue tests. A mathematical procedure was developed to determine the endurance limit of HMA due to healing that occurs during the rest periods between loading cycles. Relating healing to endurance limit makes this procedure unique compared to previous research projects that investigated these concepts separately. An extensive laboratory testing program, including 468 beam tests, was conducted according to AASHTO T321-03 test procedure. Six factors that affect the fatigue response of HMA were evaluated: binder type, binder content, air voids, test temperature, rest period and applied strain. The endurance limit was determined when no accumulated damage occurred indicating complete healing. Based on the test results, a first generation predictive model was developed to relate stiffness ratio to material properties. A second generation stiffness ratio model was also developed by replacing four factors (binder type, binder content, air voids, and temperature) with the initial stiffness of the mixture, which is a basic material property. The model also accounts for the nonlinear effects of the rest period and the applied strain on the healing and endurance limit. A third generation model was then developed by incorporation the number of loading cycles at different locations along the fatigue degradation curve for each test in order to account for the nonlinearity between stiffness ratio and loading cycles. In addition to predicting endurance limit, the model has the ability to predict the number of cycles to failure at any rest period and stiffness combination. The model was used to predict fatigue relationship curves for tests with rest period and determining the K1, K2, and K3 fatigue cracking coefficients. The three generation models predicted close endurance limit values ranging from 22 to 204 micro strains. After developing the third generation stiffness ratio model, the predicted endurance limit values were integrated in the strain-Nf fatigue relationships as a step toward incorporating the endurance limit in the MEPDG software. The results of this study can be used to design perpetual pavements that can sustain a large number of loads if traffic volumes and vehicle weights are controlled.

ContributorsSouliman, Mena (Author) / Mamlouk, Michael S. (Thesis advisor) / Witczak, Matthew W. (Thesis advisor) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2012
150721-Thumbnail Image.png
Description

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms

Pavement preservation is the practice of selecting and applying maintenance activities in order to extend pavement life, enhance performance, and ensure cost effectiveness. Pavement preservation methods should be applied before pavements display significant amounts of environmental distress. The long-term effectiveness of different pavement preservation techniques can be measured in terms of life extension, relative benefit, and benefit-cost ratio. Optimal timing of pavement preservation means that the given maintenance treatment is applied so that it will extend the life of the roadway for the longest possible period with the minimum cost. This document examines the effectiveness of chip seal treatment in four climatic zones in the United States. The Long-Term Pavement Performance database was used to extract roughness and traffic data, as well as the maintenance and rehabilitation histories of treated and untreated sections. The sections were categorized into smooth, medium, and rough pavements, based upon initial condition as indicated by the International Roughness Index. Pavement performance of treated and untreated sections was collectively modeled using exponential regression analysis. Effectiveness was evaluated in terms of life extension, relative benefit, and benefit-cost ratio. The results of the study verified the assumption that treated sections performed better than untreated sections. The results also showed that the life extension, relative benefit, and benefit cost ratio are highest for sections whose initial condition is smooth at the time of chip seal treatment. These same measures of effectiveness are lowest for pavements whose condition is rough at the time of treatment. Chip seal treatment effectiveness showed no correlation to climatic conditions or to traffic levels.

ContributorsDosa, Matild (Author) / Mamlouk, Michael S. (Thesis advisor) / Kaloush, Kamil (Committee member) / Zapata, Claudia E (Committee member) / Arizona State University (Publisher)
Created2012
150867-Thumbnail Image.png
Description
The growing use of synthetic population, which is a disaggregate representation of the population of an area similar to the real population currently or in the future, has motivated the analysis of its sensitivity in the population generation procedure. New methods in PopGen have enhanced the generation of synthetic populations

The growing use of synthetic population, which is a disaggregate representation of the population of an area similar to the real population currently or in the future, has motivated the analysis of its sensitivity in the population generation procedure. New methods in PopGen have enhanced the generation of synthetic populations whereby both household-level and person-level characteristics of interest can be matched in a computationally efficient manner. In the process of set up, population synthesis procedures need sample records for households and persons to match the marginal totals with a specific set of control variables for both the household and person levels, or only the household level, for a specific geographic resolution. In this study, an approach has been taken to analyze the sensitivity by changing and varying this number of controls, with and without taking person controls. The implementation of alternative constraints has been applied on a sample of three hundred block groups in Maricopa County, Arizona. The two datasets that have been used in this study are Census 2000 and a combination of Census 2000 and ACS 2005-2009 dataset. The variation in results for two different rounding methods: arithmetic and bucket rounding have been examined. Finally, the combined sample prepared from the available Census 2000 and ACS 2005-2009 dataset was used to investigate how the results differ when flexibility for drawing households is greater. Study shows that fewer constraints both in household and person levels match the aggregate total population more accurately but could not match distributions of individual attributes. A greater number of attributes both in household and person levels need to be controlled. Where number of controls is higher, using bucket rounding improves the accuracy of the results in both aggregate and disaggregates level. Using combined sample gives the software more flexibility as well as a rich seed matrix to draw households which generates more accurate synthetic population. Therefore, combined sample is another potential option to improve the accuracy in matching both aggregate and disaggregate level household and person distributions.
ContributorsDey, Rumpa Rani (Author) / Pendyala, Ram M. (Thesis advisor) / Ahn, Soyoung (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2012
156736-Thumbnail Image.png
Description

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight

Asphalt binder is a complex viscoelastic hydrocarbon, whose performance depends upon interaction between its physical and chemical properties, both of which are equally important to the successful understanding of the material. Researchers have proposed various models linking linear viscoelastic (LVE) and microstructural parameters. However, none of these parameters provide insight into the relationship in the non- linear viscoelastic NLVE domain. The main goals of this dissertation are two fold. The first goal is to utilize the technique of Laser Desorption Mass Spectroscopy (LDMS) to relate the molecular structure of asphalt binders to its viscoelastic properties. The second goal of the study is to utilize different NLVE characterization tools and analysis procedures to get a clear understanding of the NLVE behavior of the asphalt binders. The goals of the study are divided into four objectives; 1) Performing the LDMS test on asphalt binder to develop at the molecular weight distributions for different asphalts, 2) Characterizing LVE properties of Arizona asphalt binders, 3) Development of relationship between molecular structure and linear viscoelasticity, 4) Understanding NLVE behavior of asphalt binders through three different characterization methods and analysis techniques.

In this research effort, a promising physico-chemical relationship is developed between number average molecular weight and width of relaxation spectrum by utilizing the data from LVE characterization and the molecular weight distribution from LDMS. The relationship states that as the molecular weight of asphalt binders increase, they require more time to relax the developed stresses. Also, NLVE characterization was carried out at intermediate and high temperatures using three different tests, time sweep fatigue test, repeated stress/strain sweep test and Multiple Stress Creep and Recovery (MSCR) test. For the intermediate temperature fatigue tests, damage characterization was conducted by applying the S-VECD model and it was found that aged binders possess greater fatigue resistance than unaged binders. Using the high temperature LAOS tests, distortion was observed in the stress-strain relationships and the data was analyzed using a Fourier transform based tool called MITlaos, which deconvolves stress strain data into harmonic constituents and aids in identification of non-linearity by detecting higher order harmonics. Using the peak intensities observed at higher harmonic orders, non-linearity was quantified through a parameter termed as “Q”, which in future applications can be used to relate to asphalt chemical parameters. Finally, the last NLVE characterization carried out was the MSCR test, where the focus was on the scrutiny of the Jnrdiff parameter. It was found that Jnrdiff is not a capable parameter to represent the stress-sensitivity of asphalt binders. The developed alternative parameter Jnrslope does a better job of not only being a representative parameter of stress sensitivity but also for temperature sensitivity.

ContributorsGundla, Akshay (Author) / Underwood, Benjamin S (Thesis advisor) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael S. (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2018
156880-Thumbnail Image.png
Description

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially

Crumb rubber use in asphalt mixtures by means of wet process technology has been in place for several years in the United States with good performance record; however, it has some shortcomings such as maintaining high mixing and compaction temperatures in the field production. Organosilane (OS), a nanotechnology chemical substantially improves the bonding between aggregate and asphalt by modifying the aggregate structure from hydrophilic to hydrophobic contributing to increased moisture resistance of conventional asphalt mixtures. Use of Organosilane also reduces the mixing and compaction temperatures and facilitates similar compaction effort at lower temperatures. The objective of this research study was first to perform a Superpave mix design for Crumb Rubber Modified Binder (CRMB) gap-graded mixture with and without Organosilane; and secondly, analyse the performance of CRMB mixtures with and without Organosilane by conducting various laboratory tests. Performance Grade (PG) 64-22 binder was used to create the gap-graded Hot Mix Asphalt (HMA) mixtures for this study. Laboratory tests included rotational viscometer binder test and mixtures tests: dynamic modulus, flow number, tensile strength ratio, and C* fracture test. Results from the tests indicated that the addition of Organosilane facilitated easier compaction efforts despite reduced mixing and compaction temperatures. Organosilane also modestly increased the moisture susceptibility and resistance to crack propagation yet retaining equal rutting resistance of the CRMB mixtures.

ContributorsSrinivasan, Aswin Kumar Kumar (Author) / Kaloush, Kamil (Thesis advisor) / Medina, Jose R. (Jose Roberto) (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2018
154627-Thumbnail Image.png
Description

Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts road safety. Many transportation agencies use IRI to allocate annual

Pavement management systems and performance prediction modeling tools are essential for maintaining an efficient and cost effective roadway network. One indicator of pavement performance is the International Roughness Index (IRI), which is a measure of ride quality and also impacts road safety. Many transportation agencies use IRI to allocate annual maintenance and rehabilitation strategies to their road network.

The objective of the work in this study was to develop a methodology to evaluate and predict pavement roughness over the pavement service life. Unlike previous studies, a unique aspect of this work was the use of non-linear mathematical function, sigmoidal growth function, to model the IRI data and provide agencies with the information needed for decision making in asset management and funding allocation. The analysis included data from two major databases (case studies): Long Term Pavement Performance (LTPP) and the Minnesota Department of Transportation MnROAD research program. Each case study analyzed periodic IRI measurements, which were used to develop the sigmoidal models.

The analysis aimed to demonstrate several concepts; that the LTPP and MnROAD roughness data could be represented using the sigmoidal growth function, that periodic IRI measurements collected for road sections with similar characteristics could be processed to develop an IRI curve representing the pavement deterioration for this group, and that pavement deterioration using historical IRI data can provide insight on traffic loading, material, and climate effects. The results of the two case studies concluded that in general, pavement sections without drainage systems, narrower lanes, higher traffic, or measured in the outermost lane were observed to have more rapid deterioration trends than their counterparts.

Overall, this study demonstrated that the sigmoidal growth function is a viable option for roughness deterioration modeling. This research not only to demonstrated how historical roughness can be modeled, but also how the same framework could be applied to other measures of pavement performance which deteriorate in a similar manner, including distress severity, present serviceability rating, and friction loss. These sigmoidal models are regarded to provide better understanding of particular pavement network deterioration, which in turn can provide value in asset management and resource allocation planning.

ContributorsBeckley, Michelle Elizabeth (Author) / Kaloush, Kamil (Thesis advisor) / Underwood, Benjamin S (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2016
155655-Thumbnail Image.png
Description
Highway safety is a major priority for the public and for transportation agencies. Pavement distresses directly affect ride quality, and indirectly contribute to driver distraction, vehicle operation, and accidents. In this study, analysis was performed on highways in the states of Arizona, North Carolina and Maryland for years

Highway safety is a major priority for the public and for transportation agencies. Pavement distresses directly affect ride quality, and indirectly contribute to driver distraction, vehicle operation, and accidents. In this study, analysis was performed on highways in the states of Arizona, North Carolina and Maryland for years between 2013 and 2015 in order to investigate the relationship between accident rate and pavement roughness and rutting. Two main types of data were collected: crash data from the accident records and roughness and rut depth data from the pavement management system database in each state. Crash rates were calculated using the U.S. Department of Transportation method, which is the number of accidents per vehicle per mile per year multiplied by 100,000,000. The variations of crash rate with both International Roughness Index (IRI) and rut depth were investigated. Linear regression analysis was performed to study the correlation between parameters. The analysis showed positive correlations between road roughness and rut depth in all cases irrespective of crash severity level. The crash rate data points were high for IRI values above 250-300 inches/mile in several cases. Crash road segments represent 37-48 percent of the total length of the network using 1-mile segments. Roughness and rut depth values for crash and non-crash segments were close to each other, suggesting that roughness and rutting are not the only factors affecting number of crashes but possibly in combination with other factors such as traffic volume, human factors, etc. In summary, it can be concluded that both roughness and rut depth affect crash rate and highway maintenance authorities should maintain good pavement condition in order to reduce crash occurrences.
ContributorsVinayakamurthy, Mounica (Author) / Mamlouk, Michael S. (Thesis advisor) / Underwood, Benjamin (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2017