Matching Items (19)

158877-Thumbnail Image.png

An Evaluation of Statistical Tests of Suppression

Description

This research explores tests for statistical suppression. Suppression is a statistical phenomenon whereby the magnitude of an effect becomes larger when another variable is added to the regression equation. From

This research explores tests for statistical suppression. Suppression is a statistical phenomenon whereby the magnitude of an effect becomes larger when another variable is added to the regression equation. From a causal perspective, suppression occurs when there is inconsistent mediation or negative confounding. Several different estimators for suppression are evaluated conceptually and in a statistical simulation study where we impose suppression and non-suppression conditions. For each estimator without an existing standard error formula, one was derived in order to conduct significance tests and build confidence intervals. Overall, two of the estimators were biased and had poor coverage, one worked well but had inflated type-I error rates when the population model was complete mediation. As a result of analyzing these three tests, a fourth was considered in the late stages of the project and showed promising results that address concerns of the other tests. When the tests were applied to real data, they gave similar results and were consistent.

Contributors

Agent

Created

Date Created
  • 2020

151704-Thumbnail Image.png

Young adult maturing out of alcohol involvement: : moderated effects among marriage, developmental changes in personality, and late adolescent alcohol involvement

Description

Research has shown that a developmental process of maturing out of alcohol involvement occurs during young adulthood, and that this process is related to both young adult role transitions (e.g.,

Research has shown that a developmental process of maturing out of alcohol involvement occurs during young adulthood, and that this process is related to both young adult role transitions (e.g., marriage) and personality developmental (e.g., decreased disinhibition and neuroticism). The current study extended past research by testing whether protective marriage and personality effects on maturing out were stronger among more severe late adolescent drinkers, and whether protective marriage effects were stronger among those who experienced more personality development. Parental alcoholism and gender were tested as moderators of marriage, personality, and late adolescent drinking effects on maturing out; and as distal predictors mediated by these effects. Participants were a subsample (N = 844; 51% children of alcoholics; 53% male, 71% non-Hispanic Caucasian, 27% Hispanic; Chassin, Barrera, Bech, & Kossak-Fuller, 1992) from a larger longitudinal study of familial alcoholism. Hypotheses were tested with latent growth models characterizing alcohol consumption and drinking consequence trajectories from late adolescence to adulthood (age 17-40). Past findings were replicated by showing protective effects of becoming married, sensation-seeking reductions, and neuroticism reductions on the drinking trajectories. Moderation tests showed that protective marriage effects on the drinking trajectories were stronger among those with higher pre-marriage drinking in late adolescence (i.e., higher growth intercepts). This might reflect role socialization mechanisms such that more severe drinking produces more conflict with the demands of new roles (i.e., role incompatibility), thus requiring greater drinking reductions to resolve this conflict. In contrast, little evidence was found for moderation of personality effects by late adolescent drinking or for moderation of marriage effects by personality. Parental alcoholism findings suggested complex moderated mediation pathways. Parental alcoholism predicted less drinking reduction through decreasing the likelihood of marriage (mediation) and muting marriage's effect on the drinking trajectories (moderation), but parental alcoholism also predicted more drinking reduction through increasing initial drinking in late adolescence (mediation). The current study provides new insights into naturally occurring processes of recovery during young adulthood and suggests that developmentally-tailored interventions for young adults could harness these natural recovery processes (e.g., by integrating role incompatibility themes and addressing factors that block role effects among those with familial alcoholism).

Contributors

Agent

Created

Date Created
  • 2013

149971-Thumbnail Image.png

The sensitivity of confirmatory factor analytic fit indices to violations of factorial invariance across latent classes: a simulation study

Description

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as

Although the issue of factorial invariance has received increasing attention in the literature, the focus is typically on differences in factor structure across groups that are directly observed, such as those denoted by sex or ethnicity. While establishing factorial invariance across observed groups is a requisite step in making meaningful cross-group comparisons, failure to attend to possible sources of latent class heterogeneity in the form of class-based differences in factor structure has the potential to compromise conclusions with respect to observed groups and may result in misguided attempts at instrument development and theory refinement. The present studies examined the sensitivity of two widely used confirmatory factor analytic model fit indices, the chi-square test of model fit and RMSEA, to latent class differences in factor structure. Two primary questions were addressed. The first of these concerned the impact of latent class differences in factor loadings with respect to model fit in a single sample reflecting a mixture of classes. The second question concerned the impact of latent class differences in configural structure on tests of factorial invariance across observed groups. The results suggest that both indices are highly insensitive to class-based differences in factor loadings. Across sample size conditions, models with medium (0.2) sized loading differences were rejected by the chi-square test of model fit at rates just slightly higher than the nominal .05 rate of rejection that would be expected under a true null hypothesis. While rates of rejection increased somewhat when the magnitude of loading difference increased, even the largest sample size with equal class representation and the most extreme violations of loading invariance only had rejection rates of approximately 60%. RMSEA was also insensitive to class-based differences in factor loadings, with mean values across conditions suggesting a degree of fit that would generally be regarded as exceptionally good in practice. In contrast, both indices were sensitive to class-based differences in configural structure in the context of a multiple group analysis in which each observed group was a mixture of classes. However, preliminary evidence suggests that this sensitivity may contingent on the form of the cross-group model misspecification.

Contributors

Agent

Created

Date Created
  • 2011

153748-Thumbnail Image.png

A multi-method examination of mother-infant synchrony as a predictor of social and emotional problems

Description

The parent-child relationship is one of the earliest and most formative experiences for social and emotional development. Synchrony, defined as the rhythmic patterning and quality of mutual affect, engagement, and

The parent-child relationship is one of the earliest and most formative experiences for social and emotional development. Synchrony, defined as the rhythmic patterning and quality of mutual affect, engagement, and physiological attunement, has been identified as a critical quality of a healthy mother-infant relationship. Although the salience of the quality of family interaction has been well-established, clinical and developmental research has varied widely in methods for observing and identifying influential aspects of synchrony. In addition, modern dynamic perspectives presume multiple factors converge in a complex system influenced by both nature and nurture, in which individual traits, behavior, and environment are inextricably intertwined within the system of dyadic relational units.

The present study aimed to directly examine and compare synchrony from three distinct approaches: observed microanalytic behavioral sequences, observed global dyadic qualities, and physiological attunement between mothers and infants. The sample consisted of 323 Mexican American mothers and their infants followed from the third trimester of pregnancy through the first year of life. Mothers were interviewed prenatally, observed at a home visit at 12 weeks postpartum, and were finally interviewed for child social-emotional problems at child age 12 months. Specific aspects of synchrony (microanalytical, global, and physiological) were examined separately as well as together to identify comparable and divergent qualities within the construct.

Findings indicated that multiple perspectives on synchrony are best examined together, but as independent qualities to account for varying characteristics captured by divergent systems. Dyadic relationships characterized by higher reciprocity, more time and flexibility in mutual non-negative engagement, and less tendency to enter negative or unengaged states were associated with fewer child social-emotional problems at child age 12 months. Lower infant cortisol was associated with higher levels of externalizing problems, and smaller differences between mother and child cortisol were associated with higher levels of child dysregulation. Results underscore the complex but important nature of synchrony as a salient mechanism underlying the social-emotional growth of children. A mutually engaged, non-negative, and reciprocal environment lays the foundation for the successful social and self-regulatory competence of infants in the first year of life.

Contributors

Agent

Created

Date Created
  • 2015

154889-Thumbnail Image.png

Time metric in latent difference score models

Description

Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables.

Time metric is an important consideration for all longitudinal models because it can influence the interpretation of estimates, parameter estimate accuracy, and model convergence in longitudinal models with latent variables. Currently, the literature on latent difference score (LDS) models does not discuss the importance of time metric. Furthermore, there is little research using simulations to investigate LDS models. This study examined the influence of time metric on model estimation, interpretation, parameter estimate accuracy, and convergence in LDS models using empirical simulations. Results indicated that for a time structure with a true time metric where participants had different starting points and unequally spaced intervals, LDS models fit with a restructured and less informative time metric resulted in biased parameter estimates. However, models examined using the true time metric were less likely to converge than models using the restructured time metric, likely due to missing data. Where participants had different starting points but equally spaced intervals, LDS models fit with a restructured time metric resulted in biased estimates of intercept means, but all other parameter estimates were unbiased, and models examined using the true time metric had less convergence than the restructured time metric as well due to missing data. The findings of this study support prior research on time metric in longitudinal models, and further research should examine these findings under alternative conditions. The importance of these findings for substantive researchers is discussed.

Contributors

Agent

Created

Date Created
  • 2016

157542-Thumbnail Image.png

Evaluating Person-Oriented Methods for Mediation

Description

Statistical inference from mediation analysis applies to populations, however, researchers and clinicians may be interested in making inference to individual clients or small, localized groups of people. Person-oriented approaches focus

Statistical inference from mediation analysis applies to populations, however, researchers and clinicians may be interested in making inference to individual clients or small, localized groups of people. Person-oriented approaches focus on the differences between people, or latent groups of people, to ask how individuals differ across variables, and can help researchers avoid ecological fallacies when making inferences about individuals. Traditional variable-oriented mediation assumes the population undergoes a homogenous reaction to the mediating process. However, mediation is also described as an intra-individual process where each person passes from a predictor, through a mediator, to an outcome (Collins, Graham, & Flaherty, 1998). Configural frequency mediation is a person-oriented analysis of contingency tables that has not been well-studied or implemented since its introduction in the literature (von Eye, Mair, & Mun, 2010; von Eye, Mun, & Mair, 2009). The purpose of this study is to describe CFM and investigate its statistical properties while comparing it to traditional and casual inference mediation methods. The results of this study show that joint significance mediation tests results in better Type I error rates but limit the person-oriented interpretations of CFM. Although the estimator for logistic regression and causal mediation are different, they both perform well in terms of Type I error and power, although the causal estimator had higher bias than expected, which is discussed in the limitations section.

Contributors

Agent

Created

Date Created
  • 2019

154939-Thumbnail Image.png

Performance of contextual multilevel models for comparing between-person and within-person effects

Description

The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may

The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been explicated mostly for cross-sectional data, but they can also be applied to longitudinal data where level-1 effects represent within-person relations and level-2 effects represent between-person relations. With longitudinal data, estimating the contextual effect allows direct evaluation of whether between-person and within-person effects differ. Furthermore, these models, unlike single-level models, permit individual differences by allowing within-person slopes to vary across individuals. This study examined the statistical performance of the contextual model with a random slope for longitudinal within-person fluctuation data.

A Monte Carlo simulation was used to generate data based on the contextual multilevel model, where sample size, effect size, and intraclass correlation (ICC) of the predictor variable were varied. The effects of simulation factors on parameter bias, parameter variability, and standard error accuracy were assessed. Parameter estimates were in general unbiased. Power to detect the slope variance and contextual effect was over 80% for most conditions, except some of the smaller sample size conditions. Type I error rates for the contextual effect were also high for some of the smaller sample size conditions. Conclusions and future directions are discussed.

Contributors

Agent

Created

Date Created
  • 2016

153962-Thumbnail Image.png

Planned missing data in mediation analysis

Description

This dissertation examines a planned missing data design in the context of mediational analysis. The study considered a scenario in which the high cost of an expensive mediator limited sample

This dissertation examines a planned missing data design in the context of mediational analysis. The study considered a scenario in which the high cost of an expensive mediator limited sample size, but in which less expensive mediators could be gathered on a larger sample size. Simulated multivariate normal data were generated from a latent variable mediation model with three observed indicator variables, M1, M2, and M3. Planned missingness was implemented on M1 under the missing completely at random mechanism. Five analysis methods were employed: latent variable mediation model with all three mediators as indicators of a latent construct (Method 1), auxiliary variable model with M1 as the mediator and M2 and M3 as auxiliary variables (Method 2), auxiliary variable model with M1 as the mediator and M2 as a single auxiliary variable (Method 3), maximum likelihood estimation including all available data but incorporating only mediator M1 (Method 4), and listwise deletion (Method 5).

The main outcome of interest was empirical power to detect the mediated effect. The main effects of mediation effect size, sample size, and missing data rate performed as expected with power increasing for increasing mediation effect sizes, increasing sample sizes, and decreasing missing data rates. Consistent with expectations, power was the greatest for analysis methods that included all three mediators, and power decreased with analysis methods that included less information. Across all design cells relative to the complete data condition, Method 1 with 20% missingness on M1 produced only 2.06% loss in power for the mediated effect; with 50% missingness, 6.02% loss; and 80% missingess, only 11.86% loss. Method 2 exhibited 20.72% power loss at 80% missingness, even though the total amount of data utilized was the same as Method 1. Methods 3 – 5 exhibited greater power loss. Compared to an average power loss of 11.55% across all levels of missingness for Method 1, average power losses for Methods 3, 4, and 5 were 23.87%, 29.35%, and 32.40%, respectively. In conclusion, planned missingness in a multiple mediator design may permit higher quality characterization of the mediator construct at feasible cost.

Contributors

Agent

Created

Date Created
  • 2015

156631-Thumbnail Image.png

Comparison of methods for estimating longitudinal indirect effects

Description

Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized

Mediation analysis is used to investigate how an independent variable, X, is related to an outcome variable, Y, through a mediator variable, M (MacKinnon, 2008). If X represents a randomized intervention it is difficult to make a cause and effect inference regarding indirect effects without making no unmeasured confounding assumptions using the potential outcomes framework (Holland, 1988; MacKinnon, 2008; Robins & Greenland, 1992; VanderWeele, 2015), using longitudinal data to determine the temporal order of M and Y (MacKinnon, 2008), or both. The goals of this dissertation were to (1) define all indirect and direct effects in a three-wave longitudinal mediation model using the causal mediation formula (Pearl, 2012), (2) analytically compare traditional estimators (ANCOVA, difference score, and residualized change score) to the potential outcomes-defined indirect effects, and (3) use a Monte Carlo simulation to compare the performance of regression and potential outcomes-based methods for estimating longitudinal indirect effects and apply the methods to an empirical dataset. The results of the causal mediation formula revealed the potential outcomes definitions of indirect effects are equivalent to the product of coefficient estimators in a three-wave longitudinal mediation model with linear and additive relations. It was demonstrated with analytical comparisons that the ANCOVA, difference score, and residualized change score models’ estimates of two time-specific indirect effects differ as a function of the respective mediator-outcome relations at each time point. The traditional model that performed the best in terms of the evaluation criteria in the Monte Carlo study was the ANCOVA model and the potential outcomes model that performed the best in terms of the evaluation criteria was sequential G-estimation. Implications and future directions are discussed.

Contributors

Agent

Created

Date Created
  • 2018

157069-Thumbnail Image.png

Intrapersonal culture clash: the effect of cultural identity incongruence on decision-making

Description

Research and theory in social psychology and related fields indicates that people simultaneously hold many cultural identities. And it is well evidenced across relevant fields (e.g., sociology, marketing, economics) that

Research and theory in social psychology and related fields indicates that people simultaneously hold many cultural identities. And it is well evidenced across relevant fields (e.g., sociology, marketing, economics) that salient identities are instrumental in a variety of cognitive and behavioral processes, including decision-making. It is not, however, well understood how the relative salience of various cultural identities factors into the process of making identity-relevant choices, particularly ones that require an actor to choose between conflicting sets of cultural values or beliefs. It is also unclear whether the source of that salience (e.g., chronic or situational) is meaningful in this regard. The current research makes novel predictions concerning the roles of cultural identity centrality and cultural identity situational salience in three distinct aspects of the decision-making process: Direction of decision, speed of decision, and emotion related to decision. In doing so, the research highlights two under-researched forms of culture (i.e., political and religious) and uses as the focal dependent variable a decision-making scenario that forces participants to choose between the values of their religious and political cultures and, to some degree, behave in an identity-inconsistent manner. Results indicate main effects of Christian identity centrality and democrat identity centrality on preference for traditional versus gender-neutral (i.e., non-traditional/progressive) restrooms after statistically controlling for covariates. Additionally, results show a significant main effect of democrat identity centrality and a significant interaction effect of Christian and democrat identity centrality on positive emotion linked to the decision. Post hoc analyses further reveal a significant quadratic relationship between Christian identity centrality and emotion related to the decision. There was no effect of situational strength of democrat identity salience on the decision. Neither centrality or situational strength had any effect on the speed with which participants made their decisions. This research theoretically and empirically advances the study of cultural psychology and carries important implications for identity research and judgment and decision-making across a variety of fields, including management, behavioral economics, and marketing.

Contributors

Agent

Created

Date Created
  • 2019