Matching Items (21)

128195-Thumbnail Image.png

The safety and health improvement:enhancing law enforcement departments study: feasibility and findings

Description

This randomized prospective trial aimed to assess the feasibility and efficacy of a team-based worksite health and safety intervention for law enforcement personnel. Four-hundred and eight subjects were enrolled and

This randomized prospective trial aimed to assess the feasibility and efficacy of a team-based worksite health and safety intervention for law enforcement personnel. Four-hundred and eight subjects were enrolled and half were randomized to meet for weekly, peer-led sessions delivered from a scripted team-based health and safety curriculum. Curriculum addressed: exercise, nutrition, stress, sleep, body weight, injury, and other unhealthy lifestyle behaviors such as smoking and heavy alcohol use. Health and safety questionnaires administered before and after the intervention found significant improvements for increased fruit and vegetable consumption, overall healthy eating, increased sleep quantity and sleep quality, and reduced personal stress.

Contributors

Agent

Created

Date Created
  • 2014-05-08

128235-Thumbnail Image.png

Mediation Analysis with Survival Outcomes: Accelerated Failure Time vs. Proportional Hazards Models

Description

Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have

Objective: Survival time is an important type of outcome variable in treatment research. Currently, limited guidance is available regarding performing mediation analyses with survival outcomes, which generally do not have normally distributed errors, and contain unobserved (censored) events. We present considerations for choosing an approach, using a comparison of semi-parametric proportional hazards (PH) and fully parametric accelerated failure time (AFT) approaches for illustration.
Method: We compare PH and AFT models and procedures in their integration into mediation models and review their ability to produce coefficients that estimate causal effects. Using simulation studies modeling Weibull-distributed survival times, we compare statistical properties of mediation analyses incorporating PH and AFT approaches (employing SAS procedures PHREG and LIFEREG, respectively) under varied data conditions, some including censoring. A simulated data set illustrates the findings.
Results: AFT models integrate more easily than PH models into mediation models. Furthermore, mediation analyses incorporating LIFEREG produce coefficients that can estimate causal effects, and demonstrate superior statistical properties. Censoring introduces bias in the coefficient estimate representing the treatment effect on outcome—underestimation in LIFEREG, and overestimation in PHREG. With LIFEREG, this bias can be addressed using an alternative estimate obtained from combining other coefficients, whereas this is not possible with PHREG.
Conclusions: When Weibull assumptions are not violated, there are compelling advantages to using LIFEREG over PHREG for mediation analyses involving survival-time outcomes. Irrespective of the procedures used, the interpretation of coefficients, effects of censoring on coefficient estimates, and statistical properties should be taken into account when reporting results.

Contributors

Created

Date Created
  • 2016-03-30

129005-Thumbnail Image.png

Mechanisms of motivational interviewing in health promotion: a Bayesian mediation analysis

Description

Background
Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the

Background
Counselor behaviors that mediate the efficacy of motivational interviewing (MI) are not well understood, especially when applied to health behavior promotion. We hypothesized that client change talk mediates the relationship between counselor variables and subsequent client behavior change.
Methods
Purposeful sampling identified individuals from a prospective randomized worksite trial using an MI intervention to promote firefighters’ healthy diet and regular exercise that increased dietary intake of fruits and vegetables (n = 21) or did not increase intake of fruits and vegetables (n = 22). MI interactions were coded using the Motivational Interviewing Skill Code (MISC 2.1) to categorize counselor and firefighter verbal utterances. Both Bayesian and frequentist mediation analyses were used to investigate whether client change talk mediated the relationship between counselor skills and behavior change.
Results
Counselors’ global spirit, empathy, and direction and MI-consistent behavioral counts (e.g., reflections, open questions, affirmations, emphasize control) significantly correlated with firefighters’ total client change talk utterances (rs = 0.42, 0.40, 0.30, and 0.61, respectively), which correlated significantly with their fruit and vegetable intake increase (r = 0.33). Both Bayesian and frequentist mediation analyses demonstrated that findings were consistent with hypotheses, such that total client change talk mediated the relationship between counselor’s skills—MI-consistent behaviors [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .02, .12] and MI spirit [Bayesian mediated effect: αβ = .06 (.03), 95% CI = .01, .13]—and increased fruit and vegetable consumption.
Conclusion
Motivational interviewing is a resource- and time-intensive intervention, and is currently being applied in many arenas. Previous research has identified the importance of counselor behaviors and client change talk in the treatment of substance use disorders. Our results indicate that similar mechanisms may underlie the effects of MI for dietary change. These results inform MI training and application by identifying those processes critical for MI success in health promotion domains.

Contributors

Agent

Created

Date Created
  • 2012-06-08

129151-Thumbnail Image.png

When the test of mediation is more powerful than the test of the total effect

Description

Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in

Although previous research has studied power in mediation models, the extent to which the inclusion of a mediator will increase power has not been investigated. To address this deficit, in a first study we compared the analytical power values of the mediated effect and the total effect in a single-mediator model, to identify the situations in which the inclusion of one mediator increased statistical power. The results from this first study indicated that including a mediator increased statistical power in small samples with large coefficients and in large samples with small coefficients, and when coefficients were nonzero and equal across models. Next, we identified conditions under which power was greater for the test of the total mediated effect than for the test of the total effect in the parallel two-mediator model. These results indicated that including two mediators increased power in small samples with large coefficients and in large samples with small coefficients, the same pattern of results that had been found in the first study. Finally, we assessed the analytical power for a sequential (three-path) two-mediator model and compared the power to detect the three-path mediated effect to the power to detect both the test of the total effect and the test of the mediated effect for the single-mediator model. The results indicated that the three-path mediated effect had more power than the mediated effect from the single-mediator model and the test of the total effect. Practical implications of these results for researchers are then discussed.

Contributors

Agent

Created

Date Created
  • 2015-06-01

129027-Thumbnail Image.png

The IGNITE (investigation to guide new insight into translational effectiveness) trial: Protocol for a translational study of an evidenced-based wellness program in fire departments

Description

Background
Worksites are important locations for interventions to promote health. However, occupational programs with documented efficacy often are not used, and those being implemented have not been studied. The research

Background
Worksites are important locations for interventions to promote health. However, occupational programs with documented efficacy often are not used, and those being implemented have not been studied. The research in this report was funded through the American Reinvestment and Recovery Act Challenge Topic 'Pathways for Translational Research,' to define and prioritize determinants that enable and hinder translation of evidenced-based health interventions in well-defined settings.
Methods
The IGNITE (investigation to guide new insights for translational effectiveness) trial is a prospective cohort study of a worksite wellness and injury reduction program from adoption to final outcomes among 12 fire departments. It will employ a mixed methods strategy to define a translational model. We will assess decision to adopt, installation, use, and outcomes (reach, individual outcomes, and economic effects) using onsite measurements, surveys, focus groups, and key informant interviews. Quantitative data will be used to define the model and conduct mediation analysis of each translational phase. Qualitative data will expand on, challenge, and confirm survey findings and allow a more thorough understanding and convergent validity by overcoming biases in qualitative and quantitative methods used alone.
Discussion
Findings will inform worksite wellness in fire departments. The resultant prioritized influences and model of effective translation can be validated and manipulated in these and other settings to more efficiently move science to service.

Contributors

Agent

Created

Date Created
  • 2010-10-08

129656-Thumbnail Image.png

Sweetened drink and snacking cues in adolescents. A study using ecological momentary assessment

Description

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from

The objective of this study was to identify physical, social, and intrapersonal cues that were associated with the consumption of sweetened beverages and sweet and salty snacks among adolescents from lower SES neighborhoods. Students were recruited from high schools with a minimum level of 25% free or reduced cost lunches. Using ecological momentary assessment, participants (N = 158) were trained to answer brief questionnaires on handheld PDA devices: (a) each time they ate or drank, (b) when prompted randomly, and (c) once each evening. Data were collected over 7 days for each participant. Participants reported their location (e.g., school grounds, home), mood, social environment, activities (e.g., watching TV, texting), cravings, food cues (e.g., saw a snack), and food choices. Results showed that having unhealthy snacks or sweet drinks among adolescents was associated with being at school, being with friends, feeling lonely or bored, craving a drink or snack, and being exposed to food cues. Surprisingly, sweet drink consumption was associated with exercising. Watching TV was associated with consuming sweet snacks but not with salty snacks or sweet drinks. These findings identify important environmental and intrapersonal cues to poor snacking choices that may be applied to interventions designed to disrupt these food-related, cue-behavior linked habits.

Contributors

Agent

Created

Date Created
  • 2013-09-09

129645-Thumbnail Image.png

A Bayesian Approach for Estimating Mediation Effects With Missing Data

Description

Methodologists have developed mediation analysis techniques for a broad range of substantive applications, yet methods for estimating mediating mechanisms with missing data have been understudied. This study outlined a general

Methodologists have developed mediation analysis techniques for a broad range of substantive applications, yet methods for estimating mediating mechanisms with missing data have been understudied. This study outlined a general Bayesian missing data handling approach that can accommodate mediation analyses with any number of manifest variables. Computer simulation studies showed that the Bayesian approach produced frequentist coverage rates and power estimates that were comparable to those of maximum likelihood with the bias-corrected bootstrap. We share an SAS macro that implements Bayesian estimation and use 2 data analysis examples to demonstrate its use.

Contributors

Agent

Created

Date Created
  • 2013

152032-Thumbnail Image.png

Impact of violations of longitudinal measurement invariance in latent growth models and autoregressive quasi-simplex models

Description

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit

In order to analyze data from an instrument administered at multiple time points it is a common practice to form composites of the items at each wave and to fit a longitudinal model to the composites. The advantage of using composites of items is that smaller sample sizes are required in contrast to second order models that include the measurement and the structural relationships among the variables. However, the use of composites assumes that longitudinal measurement invariance holds; that is, it is assumed that that the relationships among the items and the latent variables remain constant over time. Previous studies conducted on latent growth models (LGM) have shown that when longitudinal metric invariance is violated, the parameter estimates are biased and that mistaken conclusions about growth can be made. The purpose of the current study was to examine the impact of non-invariant loadings and non-invariant intercepts on two longitudinal models: the LGM and the autoregressive quasi-simplex model (AR quasi-simplex). A second purpose was to determine if there are conditions in which researchers can reach adequate conclusions about stability and growth even in the presence of violations of invariance. A Monte Carlo simulation study was conducted to achieve the purposes. The method consisted of generating items under a linear curve of factors model (COFM) or under the AR quasi-simplex. Composites of the items were formed at each time point and analyzed with a linear LGM or an AR quasi-simplex model. The results showed that AR quasi-simplex model yielded biased path coefficients only in the conditions with large violations of invariance. The fit of the AR quasi-simplex was not affected by violations of invariance. In general, the growth parameter estimates of the LGM were biased under violations of invariance. Further, in the presence of non-invariant loadings the rejection rates of the hypothesis of linear growth increased as the proportion of non-invariant items and as the magnitude of violations of invariance increased. A discussion of the results and limitations of the study are provided as well as general recommendations.

Contributors

Agent

Created

Date Created
  • 2013

155680-Thumbnail Image.png

Serotonin functioning and adolescents' alcohol use: a genetically informed study examining mechanisms of risk

Description

The current study utilized data from two longitudinal samples to test mechanisms in the relation between a polygenic risk score indexing serotonin functioning and alcohol use in adolescence. Specifically, this

The current study utilized data from two longitudinal samples to test mechanisms in the relation between a polygenic risk score indexing serotonin functioning and alcohol use in adolescence. Specifically, this study tested whether individuals with lower levels of serotonin functioning as indexed by a polygenic risk score were vulnerable to poorer self-regulation, and whether poorer self-regulation subsequently predicted the divergent outcomes of depressive symptoms and aggressive/antisocial behaviors. This study then examined whether depressive symptoms and aggressive/antisocial behaviors conferred risk for later alcohol use in adolescence, and whether polygenic risk and effortful control had direct effects on alcohol use that were not mediated through problem behaviors. Finally, the study examined the potential moderating role of gender in these pathways to alcohol use.

Structural equation modeling was used to test hypotheses. Results from an independent genome-wide association study of 5-hydroxyindoleacetic acid in the cerebrospinal fluid were used to create serotonin (5-HT) polygenic risk scores, wherein higher scores reflected lower levels of 5-HT functioning. Data from three time points were drawn from each sample, and all paths were prospective. Findings suggested that 5-HT polygenic risk did not predict self-regulatory constructs. However, 5-HT polygenic risk did predict the divergent outcomes of depression and aggression/antisociality, such that higher levels of 5-HT polygenic risk predicted greater levels of depression and aggression/antisociality. Results most clearly supported adolescents’ aggression/antisociality as a mechanism in the relation between 5-HT polygenic risk and later alcohol use. Deficits in self-regulation also predicted depression and aggression/antisociality, and indirectly predicted alcohol use through aggression/antisociality. These pathways to alcohol use might be the most salient for boys with low levels of socioeconomic status.

Results are novel contributions to the literature. The previously observed association between serotonin functioning and alcohol use might be due, in part, to the fact that individuals with lower levels of serotonin functioning are predisposed towards developing earlier aggression/antisociality. Results did not support the hypothesis that serotonin functioning predisposes individuals to deficits in self-regulatory abilities. Findings extend previous research by suggesting that serotonin functioning and self-regulation might be transdiagnostic risk factors for many types of psychopathology.

Contributors

Agent

Created

Date Created
  • 2017

157544-Thumbnail Image.png

Addressing the Variable Selection Bias and Local Optimum Limitations of Longitudinal Recursive Partitioning with Time-Efficient Approximations

Description

Longitudinal recursive partitioning (LRP) is a tree-based method for longitudinal data. It takes a sample of individuals that were each measured repeatedly across time, and it splits them based on

Longitudinal recursive partitioning (LRP) is a tree-based method for longitudinal data. It takes a sample of individuals that were each measured repeatedly across time, and it splits them based on a set of covariates such that individuals with similar trajectories become grouped together into nodes. LRP does this by fitting a mixed-effects model to each node every time that it becomes partitioned and extracting the deviance, which is the measure of node purity. LRP is implemented using the classification and regression tree algorithm, which suffers from a variable selection bias and does not guarantee reaching a global optimum. Additionally, fitting mixed-effects models to each potential split only to extract the deviance and discard the rest of the information is a computationally intensive procedure. Therefore, in this dissertation, I address the high computational demand, variable selection bias, and local optimum solution. I propose three approximation methods that reduce the computational demand of LRP, and at the same time, allow for a straightforward extension to recursive partitioning algorithms that do not have a variable selection bias and can reach the global optimum solution. In the three proposed approximations, a mixed-effects model is fit to the full data, and the growth curve coefficients for each individual are extracted. Then, (1) a principal component analysis is fit to the set of coefficients and the principal component score is extracted for each individual, (2) a one-factor model is fit to the coefficients and the factor score is extracted, or (3) the coefficients are summed. The three methods result in each individual having a single score that represents the growth curve trajectory. Therefore, now that the outcome is a single score for each individual, any tree-based method may be used for partitioning the data and group the individuals together. Once the individuals are assigned to their final nodes, a mixed-effects model is fit to each terminal node with the individuals belonging to it.

I conduct a simulation study, where I show that the approximation methods achieve the goals proposed while maintaining a similar level of out-of-sample prediction accuracy as LRP. I then illustrate and compare the methods using an applied data.

Contributors

Agent

Created

Date Created
  • 2019