Matching Items (1,053)
Filtering by

Clear all filters

153221-Thumbnail Image.png
Description
This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in tour-based model systems in practice. Activity-based travel demand forecasting model systems in practice today are largely tour-based model systems that

This dissertation research contributes to the advancement of activity-based travel forecasting models along two lines of inquiry. First, the dissertation aims to introduce a continuous-time representation of activity participation in tour-based model systems in practice. Activity-based travel demand forecasting model systems in practice today are largely tour-based model systems that simulate individual daily activity-travel patterns through the prediction of day-level and tour-level activity agendas. These tour level activity-based models adopt a discrete time representation of activities and sequence the activities within tours using rule-based heuristics. An alternate stream of activity-based model systems mostly confined to the research arena are activity scheduling systems that adopt an evolutionary continuous-time approach to model activity participation subject to time-space prism constraints. In this research, a tour characterization framework capable of simulating and sequencing activities in tours along the continuous time dimension is developed and implemented using readily available travel survey data. The proposed framework includes components for modeling the multitude of secondary activities (stops) undertaken as part of the tour, the time allocated to various activities in a tour, and the sequence in which the activities are pursued.

Second, the dissertation focuses on the implementation of a vehicle fleet composition model component that can be used not only to simulate the mix of vehicle types owned by households but also to identify the specific vehicle that will be used for a specific tour. Virtually all of the activity-based models in practice only model the choice of mode without due consideration of the type of vehicle used on a tour. In this research effort, a comprehensive vehicle fleet composition model system is developed and implemented. In addition, a primary driver allocation model and a tour-level vehicle type choice model are developed and estimated with a view to advancing the ability to track household vehicle usage through the course of a day within activity-based travel model systems. It is envisioned that these advances will enhance the fidelity of activity-based travel model systems in practice.
ContributorsGarikapati, Venu Madhav (Author) / Pendyala, Ram M. (Thesis advisor) / Zhou, Xuesong (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2014
156252-Thumbnail Image.png
Description
Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public

Recently, automation, shared use, and electrification are proposed and viewed as the “three revolutions” in the future transportation sector to significantly relieve traffic congestion, reduce pollutant emissions, and increase transportation system sustainability. Motivated by the three revolutions, this research targets on the passenger-focused scheduled transportation systems, where (1) the public transit systems provide high-quality ridesharing schedules/services and (2) the upcoming optimal activity planning systems offer the best vehicle routing and assignment for household daily scheduled activities.

The high quality of system observability is the fundamental guarantee for accurately predicting and controlling the system. The rich information from the emerging heterogeneous data sources is making it possible. This research proposes a modeling framework to systemically account for the multi-source sensor information in urban transit systems to quantify the estimated state uncertainty. A system of linear equations and inequalities is proposed to generate the information space. Also, the observation errors are further considered by a least square model. Then, a number of projection functions are introduced to match the relation between the unique information space and different system states, and its corresponding state estimate uncertainties are further quantified by calculating its maximum state range.

In addition to optimizing daily operations, the continuing advances in information technology provide precious individual travel behavior data and trip information for operational planning in transit systems. This research also proposes a new alternative modeling framework to systemically account for boundedly rational decision rules of travelers in a dynamic transit service network with tight capacity constraints. An agent-based single-level integer linear formulation is proposed and can be effectively by the Lagrangian decomposition.

The recently emerging trend of self-driving vehicles and information sharing technologies starts creating a revolutionary paradigm shift for traveler mobility applications. By considering a deterministic traveler decision making framework, this research addresses the challenges of how to optimally schedule household members’ daily scheduled activities under the complex household-level activity constraints by proposing a set of integer linear programming models. Meanwhile, in the microscopic car-following level, the trajectory optimization of autonomous vehicles is also studied by proposing a binary integer programming model.
ContributorsLiu, Jiangtao (Author) / Zhou, Xuesong (Thesis advisor) / Pendyala, Ram (Committee member) / Mirchandani, Pitu (Committee member) / Lou, Yingyan (Committee member) / Arizona State University (Publisher)
Created2018
156668-Thumbnail Image.png
Description
Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel

Priced Managed Lanes (MLs) have been increasingly advocated as one of the effective ways to mitigating congestion in recent years. This study explores a new and innovative pricing strategy for MLs called Travel Time Refund (TTR). The proposed TTR provides an additional option to paying drivers that insures their travel time by issuing a refund to the toll cost if they do not reach their destination within specified travel times due to accidents or other unforeseen circumstances. Perceived benefits of TTR include raised public acceptance towards priced MLs, utilization increase of HOV/HOT lanes, overall congestion mitigation, and additional funding for relevant transportation agencies. To gauge travelers’ interests of TTR and to analyse its possible impacts, a stated preference (SP) survey was performed. An exploratory and statistical analysis of the survey responses revealed negative interest towards HOT and TTR option in accordance with common wisdom and previous studies. However, it is found that travelers are less negative about TTR than HOT alone; supporting the idea, that TTR could make HOT facilities more appealing. The impact of travel time reliability and latent variables representing psychological constructs on travelers’ choices in response to this new pricing strategy was also analysed. The results indicate that along with travel time and reliability, the decision maker’s attitudes and the level of comprehension of the concept of HOT and TTR play a significant role in their choice making. While the refund option may be theoretically and analytically feasible, the practical implementation issues cannot be ignored. This study also provides a discussion of the potential implementation considerations that include information provision to connected and non-connected vehicles, distinction between toll-only and refund customers, measurement of actual travel time, refund calculation and processing and safety and human factors issues. As the market availability of Connected and Automated Vehicles (CAVs) is prognosticated by 2020, the potential impact of such technologies on effective demand management, especially on MLs is worth investigating. Simulation analysis was performed to evaluate the system performance of a hypothetical road network at varying market penetration of CAVs. The results indicate that Connected Vehicles (CVs) could potentially encourage and enhance the use of MLs.
ContributorsVadlamani, Sravani (Author) / Lou, Yingyan (Thesis advisor) / Pendyala, Ram (Committee member) / Zhou, Xuesong (Committee member) / Grimm, Kevin (Committee member) / Arizona State University (Publisher)
Created2018