Matching Items (47)

151982-Thumbnail Image.png

Security and privacy in heterogeneous wireless and mobile networks: challenges and solutions

Description

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks,

The rapid advances in wireless communications and networking have given rise to a number of emerging heterogeneous wireless and mobile networks along with novel networking paradigms, including wireless sensor networks, mobile crowdsourcing, and mobile social networking. While offering promising solutions to a wide range of new applications, their widespread adoption and large-scale deployment are often hindered by people's concerns about the security, user privacy, or both. In this dissertation, we aim to address a number of challenging security and privacy issues in heterogeneous wireless and mobile networks in an attempt to foster their widespread adoption. Our contributions are mainly fivefold. First, we introduce a novel secure and loss-resilient code dissemination scheme for wireless sensor networks deployed in hostile and harsh environments. Second, we devise a novel scheme to enable mobile users to detect any inauthentic or unsound location-based top-k query result returned by an untrusted location-based service providers. Third, we develop a novel verifiable privacy-preserving aggregation scheme for people-centric mobile sensing systems. Fourth, we present a suite of privacy-preserving profile matching protocols for proximity-based mobile social networking, which can support a wide range of matching metrics with different privacy levels. Last, we present a secure combination scheme for crowdsourcing-based cooperative spectrum sensing systems that can enable robust primary user detection even when malicious cognitive radio users constitute the majority.

Contributors

Agent

Created

Date Created
  • 2013

150839-Thumbnail Image.png

Smartphone application for m-health and environmental monitoring systems

Description

Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental

Windows based mobile application for m-health and environmental monitoring sensor devices were developed and tested. With the number of smartphone users exponentially increasing, the applications developed for m-health and environmental monitoring devices are easy to reach the general public, if the applications are simple, user-friendly and personalized. The sensing device uses Bluetooth to communicate with the smartphone, providing mobility to the user. Since the device is small and hand-held, the user can put his smartphone in his pocket, connected to the device in his hand and can move anywhere with it. The data processing performed in the applications is verified against standard off the shelf software, the results of the tests are discussed in this document. The user-interface is very simple and doesn't require many inputs from the user other than during the initial setting when they have to enter their personal information for the records. The m-health application can be used by doctors as well as by patients. The response of the application is very quick and hence the patients need not wait for a long time to see the results. The environmental monitoring device has a real-time plot displayed on the screen of the smartphone showing concentrations of total volatile organic compounds and airborne particle count in the environment at the location of the device. The programming was done with Microsoft Visual Studio and was written on VB.NET platform. On the applications, the smartphone receives data as raw binary bytes from the device via Bluetooth and this data is processed to obtain the final result. The final result is the concentration of Nitric Oxide in ppb in the Asthma Analyzer device. In the environmental monitoring device, the final result is the concentration of total Volatile Organic Compounds and the count of airborne Particles.

Contributors

Agent

Created

Date Created
  • 2012

151055-Thumbnail Image.png

Mobile health sensor for personal exposure assessment

Description

Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However,

Air pollution is one of the biggest challenges people face today. It is closely related to people's health condition. The agencies set up standards to regulate the air pollution. However, many of the pollutants under the regulation level may still result in adverse health effect. On the other hand, it is not clear the exact mechanism of air pollutants and its health effect. So it is difficult for the health centers to advise people how to prevent the air pollutant related diseases. It is of vital importance for both the agencies and the health centers to have a better understanding of the air pollution. Based on these needs, it is crucial to establish mobile health sensors for personal exposure assessment. Here, two sensing principles are illustrated: the tuning fork platform and the colorimetric platform. Mobile devices based on these principles have been built. The detections of ozone, NOX, carbon monoxide and formaldehyde have been shown. An integrated device of nitrogen dioxide and carbon monoxide is introduced. Fan is used for sample delivery instead pump and valves to reduce the size, cost and power consumption. Finally, the future work is discussed.

Contributors

Agent

Created

Date Created
  • 2012

151059-Thumbnail Image.png

Analytical approach to dynamic bandwidth allocation algorithms used in LRPON

Description

With internet traffic being bursty in nature, Dynamic Bandwidth Allocation(DBA) Algorithms have always been very important for any broadband access network to utilize the available bandwidth effciently. It is no

With internet traffic being bursty in nature, Dynamic Bandwidth Allocation(DBA) Algorithms have always been very important for any broadband access network to utilize the available bandwidth effciently. It is no different for Passive Optical Networks(PON), which are networks based on fiber optics in the physical layer of TCP/IP stack or OSI model, which in turn increases the bandwidth in the upper layers. The work in this thesis covers general description of basic DBA Schemes and mathematical derivations that have been established in research. We introduce a Novel Survey Topology that classifes DBA schemes based on their functionality. The novel perspective of classification will be useful in determining which scheme will best suit consumer's needs. We classify DBA as Direct, Intelligent and Predictive back on its computation method and we are able to qualitatively describe their delay and throughput bounds. Also we describe a recently developed DBA Scheme, Multi-thread polling(MTP) used in LRPON and describes the different viewpoints and issues and consequently introduce a novel technique Parallel Polling that overcomes most of issues faced in MTP and that promises better delay performance for LRPON.

Contributors

Agent

Created

Date Created
  • 2012

154873-Thumbnail Image.png

Anonymity protection and access control in mobile network environment

Description

Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks.

Wireless communication technologies have been playing an important role in modern society. Due to its inherent mobility property, wireless networks are more vulnerable to passive attacks than traditional wired networks. Anonymity, as an important issue in mobile network environment, serves as the first topic that leads to all the research work presented in this manuscript. Specifically, anonymity issue in Mobile Ad hoc Networks (MANETs) is discussed with details as the first section of research.

To thoroughly study on this topic, the presented work approaches it from an attacker's perspective. Under a perfect scenario, all the traffic in a targeted MANET exhibits the communication relations to a passive attacker. However, localization errors pose a significant influence on the accuracy of the derived communication patterns. To handle such issue, a new scheme is proposed to generate super nodes, which represent the activities of user groups in the target MANET. This scheme also helps reduce the scale of monitoring work by grouping users based on their behaviors.

The first part of work on anonymity in MANET leads to the thought on its major cause. The link-based communication pattern is a key contributor to the success of the traffic analysis attack. A natural way to circumvent such issue is to use link-less approaches. Information Centric Networking (ICN) is a typical instance of such kind. Its communication pattern is able to overcome the anonymity issue with MANET. However, it also comes with its own shortcomings. One of them is access control enforcement. To tackle this issue, a new naming scheme for contents transmitted in ICN networks is presented. This scheme is based on a new Attribute-Based Encryption (ABE) algorithm. It enforces access control in ICN with minimum requirements on additional network components.

Following the research work on ABE, an important function, delegation, exhibits a potential security issue. In traditional ABE schemes, Ciphertext-Policy ABE (CP-ABE), a user is able to generate a subset of authentic attribute key components for other users using delegation function. This capability is not monitored or controlled by the trusted third party (TTP) in the cryptosystem. A direct threat caused from this issue is that any user may intentionally or unintentionally lower the standards for attribute assignments. Unauthorized users/attackers may be able to obtain their desired attributes through a delegation party instead of directly from the TTP. As the third part of work presented in this manuscript, a three-level delegation restriction architecture is proposed. Furthermore, a delegation restriction scheme following this architecture is also presented. This scheme allows the TTP to have full control on the delegation function of all its direct users.

Contributors

Agent

Created

Date Created
  • 2016

154895-Thumbnail Image.png

Fundamental limits in data privacy: from privacy measures to economic foundations

Description

Data privacy is emerging as one of the most serious concerns of big data analytics, particularly with the growing use of personal data and the ever-improving capability of data analysis.

Data privacy is emerging as one of the most serious concerns of big data analytics, particularly with the growing use of personal data and the ever-improving capability of data analysis. This dissertation first investigates the relation between different privacy notions, and then puts the main focus on developing economic foundations for a market model of trading private data.

The first part characterizes differential privacy, identifiability and mutual-information privacy by their privacy--distortion functions, which is the optimal achievable privacy level as a function of the maximum allowable distortion. The results show that these notions are fundamentally related and exhibit certain consistency: (1) The gap between the privacy--distortion functions of identifiability and differential privacy is upper bounded by a constant determined by the prior. (2) Identifiability and mutual-information privacy share the same optimal mechanism. (3) The mutual-information optimal mechanism satisfies differential privacy with a level at most a constant away from the optimal level.

The second part studies a market model of trading private data, where a data collector purchases private data from strategic data subjects (individuals) through an incentive mechanism. The value of epsilon units of privacy is measured by the minimum payment such that an individual's equilibrium strategy is to report data in an epsilon-differentially private manner. For the setting with binary private data that represents individuals' knowledge about a common underlying state, asymptotically tight lower and upper bounds on the value of privacy are established as the number of individuals becomes large, and the payment--accuracy tradeoff for learning the state is obtained. The lower bound assures the impossibility of using lower payment to buy epsilon units of privacy, and the upper bound is given by a designed reward mechanism. When the individuals' valuations of privacy are unknown to the data collector, mechanisms with possible negative payments (aiming to penalize individuals with "unacceptably" high privacy valuations) are designed to fulfill the accuracy goal and drive the total payment to zero. For the setting with binary private data following a general joint probability distribution with some symmetry, asymptotically optimal mechanisms are designed in the high data quality regime.

Contributors

Agent

Created

Date Created
  • 2016

155244-Thumbnail Image.png

Security and privacy in mobile computing: challenges and solutions

Description

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will

Mobile devices are penetrating everyday life. According to a recent Cisco report [10], the number of mobile connected devices such as smartphones, tablets, laptops, eReaders, and Machine-to-Machine (M2M) modules will hit 11.6 billion by 2021, exceeding the world's projected population at that time (7.8 billion). The rapid development of mobile devices has brought a number of emerging security and privacy issues in mobile computing. This dissertation aims to address a number of challenging security and privacy issues in mobile computing.

This dissertation makes fivefold contributions. The first and second parts study the security and privacy issues in Device-to-Device communications. Specifically, the first part develops a novel scheme to enable a new way of trust relationship called spatiotemporal matching in a privacy-preserving and efficient fashion. To enhance the secure communication among mobile users, the second part proposes a game-theoretical framework to stimulate the cooperative shared secret key generation among mobile users. The third and fourth parts investigate the security and privacy issues in mobile crowdsourcing. In particular, the third part presents a secure and privacy-preserving mobile crowdsourcing system which strikes a good balance among object security, user privacy, and system efficiency. The fourth part demonstrates a differentially private distributed stream monitoring system via mobile crowdsourcing. Finally, the fifth part proposes VISIBLE, a novel video-assisted keystroke inference framework that allows an attacker to infer a tablet user's typed inputs on the touchscreen by recording and analyzing the video of the tablet backside during the user's input process. Besides, some potential countermeasures to this attack are also discussed. This dissertation sheds the light on the state-of-the-art security and privacy issues in mobile computing.

Contributors

Agent

Created

Date Created
  • 2017

155821-Thumbnail Image.png

Wireless Sensor Data Transport, Aggregation and Security

Description

Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things

Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters.

The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.

Contributors

Agent

Created

Date Created
  • 2017

157577-Thumbnail Image.png

Smart resource allocation in internet-of-things: perspectives of network, security, and economics

Description

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming

Emerging from years of research and development, the Internet-of-Things (IoT) has finally paved its way into our daily lives. From smart home to Industry 4.0, IoT has been fundamentally transforming numerous domains with its unique superpower of interconnecting world-wide devices. However, the capability of IoT is largely constrained by the limited resources it can employ in various application scenarios, including computing power, network resource, dedicated hardware, etc. The situation is further exacerbated by the stringent quality-of-service (QoS) requirements of many IoT applications, such as delay, bandwidth, security, reliability, and more. This mismatch in resources and demands has greatly hindered the deployment and utilization of IoT services in many resource-intense and QoS-sensitive scenarios like autonomous driving and virtual reality.

I believe that the resource issue in IoT will persist in the near future due to technological, economic and environmental factors. In this dissertation, I seek to address this issue by means of smart resource allocation. I propose mathematical models to formally describe various resource constraints and application scenarios in IoT. Based on these, I design smart resource allocation algorithms and protocols to maximize the system performance in face of resource restrictions. Different aspects are tackled, including networking, security, and economics of the entire IoT ecosystem. For different problems, different algorithmic solutions are devised, including optimal algorithms, provable approximation algorithms, and distributed protocols. The solutions are validated with rigorous theoretical analysis and/or extensive simulation experiments.

Contributors

Agent

Created

Date Created
  • 2019

158302-Thumbnail Image.png

Computer Vision Methods for Urinary Tract Infection Diagnostics

Description

Antibiotic resistance is a very important issue that threatens mankind. As bacteria

are becoming resistant to multiple antibiotics, many common antibiotics will soon

become ineective. The ineciency of current methods for diagnostics

Antibiotic resistance is a very important issue that threatens mankind. As bacteria

are becoming resistant to multiple antibiotics, many common antibiotics will soon

become ineective. The ineciency of current methods for diagnostics is an important

cause of antibiotic resistance, since due to their relative slowness, treatment plans

are often based on physician's experience rather than on test results, having a high

chance of being inaccurate or not optimal. This leads to a need of faster, pointof-

care (POC) methods, which can provide results in a few hours. Motivated by

recent advances on computer vision methods, three projects have been developed

for bacteria identication and antibiotic susceptibility tests (AST), with the goal of

speeding up the diagnostics process. The rst two projects focus on obtaining features

from optical microscopy such as bacteria shape and motion patterns to distinguish

active and inactive cells. The results show their potential as novel methods for AST,

being able to obtain results within a window of 30 min to 3 hours, a much faster

time frame than the gold standard approach based on cell culture, which takes at

least half a day to be completed. The last project focus on the identication task,

combining large volume light scattering microscopy (LVM) and deep learning to

distinguish bacteria from urine particles. The developed setup is suitable for pointof-

care applications, as a large volume can be viewed at a time, avoiding the need

for cell culturing or enrichment. This is a signicant gain compared to cell culturing

methods. The accuracy performance of the deep learning system is higher than chance

and outperforms a traditional machine learning system by up to 20%.

Contributors

Agent

Created

Date Created
  • 2020