Matching Items (112)
152112-Thumbnail Image.png
Description
With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on current affairs by tweeting and sharing news feeds with their

With the advent of social media (like Twitter, Facebook etc.,) people are easily sharing their opinions, sentiments and enforcing their ideologies on others like never before. Even people who are otherwise socially inactive would like to share their thoughts on current affairs by tweeting and sharing news feeds with their friends and acquaintances. In this thesis study, we chose Twitter as our main data platform to analyze shifts and movements of 27 political organizations in Indonesia. So far, we have collected over 30 million tweets and 150,000 news articles from RSS feeds of the corresponding organizations for our analysis. For Twitter data extraction, we developed a multi-threaded application which seamlessly extracts, cleans and stores millions of tweets matching our keywords from Twitter Streaming API. For keyword extraction, we used topics and perspectives which were extracted using n-grams techniques and later approved by our social scientists. After the data is extracted, we aggregate the tweet contents that belong to every user on a weekly basis. Finally, we applied linear and logistic regression using SLEP, an open source sparse learning package to compute weekly score for users and mapping them to one of the 27 organizations on a radical or counter radical scale. Since, we are mapping users to organizations on a weekly basis, we are able to track user's behavior and important new events that triggered shifts among users between organizations. This thesis study can further be extended to identify topics and organization specific influential users and new users from various social media platforms like Facebook, YouTube etc. can easily be mapped to existing organizations on a radical or counter-radical scale.
ContributorsPoornachandran, Sathishkumar (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2013
152113-Thumbnail Image.png
Description
The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus

The rapid advancement of wireless technology has instigated the broad deployment of wireless networks. Different types of networks have been developed, including wireless sensor networks, mobile ad hoc networks, wireless local area networks, and cellular networks. These networks have different structures and applications, and require different control algorithms. The focus of this thesis is to design scheduling and power control algorithms in wireless networks, and analyze their performances. In this thesis, we first study the multicast capacity of wireless ad hoc networks. Gupta and Kumar studied the scaling law of the unicast capacity of wireless ad hoc networks. They derived the order of the unicast throughput, as the number of nodes in the network goes to infinity. In our work, we characterize the scaling of the multicast capacity of large-scale MANETs under a delay constraint D. We first derive an upper bound on the multicast throughput, and then propose a lower bound on the multicast capacity by proposing a joint coding-scheduling algorithm that achieves a throughput within logarithmic factor of the upper bound. We then study the power control problem in ad-hoc wireless networks. We propose a distributed power control algorithm based on the Gibbs sampler, and prove that the algorithm is throughput optimal. Finally, we consider the scheduling algorithm in collocated wireless networks with flow-level dynamics. Specifically, we study the delay performance of workload-based scheduling algorithm with SRPT as a tie-breaking rule. We demonstrate the superior flow-level delay performance of the proposed algorithm using simulations.
ContributorsZhou, Shan (Author) / Ying, Lei (Thesis advisor) / Zhang, Yanchao (Committee member) / Zhang, Junshan (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2013
151324-Thumbnail Image.png
Description
A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first

A principal goal of this dissertation is to study stochastic optimization and real-time scheduling in cyber-physical systems (CPSs) ranging from real-time wireless systems to energy systems to distributed control systems. Under this common theme, this dissertation can be broadly organized into three parts based on the system environments. The first part investigates stochastic optimization in real-time wireless systems, with the focus on the deadline-aware scheduling for real-time traffic. The optimal solution to such scheduling problems requires to explicitly taking into account the coupling in the deadline-aware transmissions and stochastic characteristics of the traffic, which involves a dynamic program that is traditionally known to be intractable or computationally expensive to implement. First, real-time scheduling with adaptive network coding over memoryless channels is studied, and a polynomial-time complexity algorithm is developed to characterize the optimal real-time scheduling. Then, real-time scheduling over Markovian channels is investigated, where channel conditions are time-varying and online channel learning is necessary, and the optimal scheduling policies in different traffic regimes are studied. The second part focuses on the stochastic optimization and real-time scheduling involved in energy systems. First, risk-aware scheduling and dispatch for plug-in electric vehicles (EVs) are studied, aiming to jointly optimize the EV charging cost and the risk of the load mismatch between the forecasted and the actual EV loads, due to the random driving activities of EVs. Then, the integration of wind generation at high penetration levels into bulk power grids is considered. Joint optimization of economic dispatch and interruptible load management is investigated using short-term wind farm generation forecast. The third part studies stochastic optimization in distributed control systems under different network environments. First, distributed spectrum access in cognitive radio networks is investigated by using pricing approach, where primary users (PUs) sell the temporarily unused spectrum and secondary users compete via random access for such spectrum opportunities. The optimal pricing strategy for PUs and the corresponding distributed implementation of spectrum access control are developed to maximize the PU's revenue. Then, a systematic study of the nonconvex utility-based power control problem is presented under the physical interference model in ad-hoc networks. Distributed power control schemes are devised to maximize the system utility, by leveraging the extended duality theory and simulated annealing.
ContributorsYang, Lei (Author) / Zhang, Junshan (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Xue, Guoliang (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2012
151275-Thumbnail Image.png
Description
The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the resource economic model can be scaled down to the transaction level in order to associate source code with costs incurred while running in the cloud. Both static and dynamic analysis techniques can be developed and applied to understand how and where cloud applications incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that they stay within expected tolerances. An adaptation of Worst Case Execution Time (WCET) analysis is presented here to statically determine worst case monetary costs of cloud applications. This analysis is used to produce an algorithm for determining control flow paths within an application that can exceed a given cost threshold. The corresponding results are used to identify path sections that contribute most to cost excess. A hybrid approach for determining cost excesses is also presented that is comprised mostly of dynamic measurements but that also incorporates calculations that are based on the static analysis approach. This approach uses operational profiles to increase the precision and usefulness of the calculations.
ContributorsBuell, Kevin, Ph.D (Author) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Lindquist, Timothy (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
151475-Thumbnail Image.png
Description
The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact

The cyber-physical systems (CPS) are emerging as the underpinning technology for major industries in the 21-th century. This dissertation is focused on two fundamental issues in cyber-physical systems: network interdependence and information dynamics. It consists of the following two main thrusts. The first thrust is targeted at understanding the impact of network interdependence. It is shown that a cyber-physical system built upon multiple interdependent networks are more vulnerable to attacks since node failures in one network may result in failures in the other network, causing a cascade of failures that would potentially lead to the collapse of the entire infrastructure. There is thus a need to develop a new network science for modeling and quantifying cascading failures in multiple interdependent networks, and to develop network management algorithms that improve network robustness and ensure overall network reliability against cascading failures. To enhance the system robustness, a "regular" allocation strategy is proposed that yields better resistance against cascading failures compared to all possible existing strategies. Furthermore, in view of the load redistribution feature in many physical infrastructure networks, e.g., power grids, a CPS model is developed where the threshold model and the giant connected component model are used to capture the node failures in the physical infrastructure network and the cyber network, respectively. The second thrust is centered around the information dynamics in the CPS. One speculation is that the interconnections over multiple networks can facilitate information diffusion since information propagation in one network can trigger further spread in the other network. With this insight, a theoretical framework is developed to analyze information epidemic across multiple interconnecting networks. It is shown that the conjoining among networks can dramatically speed up message diffusion. Along a different avenue, many cyber-physical systems rely on wireless networks which offer platforms for information exchanges. To optimize the QoS of wireless networks, there is a need to develop a high-throughput and low-complexity scheduling algorithm to control link dynamics. To that end, distributed link scheduling algorithms are explored for multi-hop MIMO networks and two CSMA algorithms under the continuous-time model and the discrete-time model are devised, respectively.
ContributorsQian, Dajun (Author) / Zhang, Junshan (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Cochran, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
151500-Thumbnail Image.png
Description
Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding

Communication networks, both wired and wireless, are expected to have a certain level of fault-tolerance capability.These networks are also expected to ensure a graceful degradation in performance when some of the network components fail. Traditional studies on fault tolerance in communication networks, for the most part, make no assumptions regarding the location of node/link faults, i.e., the faulty nodes and links may be close to each other or far from each other. However, in many real life scenarios, there exists a strong spatial correlation among the faulty nodes and links. Such failures are often encountered in disaster situations, e.g., natural calamities or enemy attacks. In presence of such region-based faults, many of traditional network analysis and fault-tolerant metrics, that are valid under non-spatially correlated faults, are no longer applicable. To this effect, the main thrust of this research is design and analysis of robust networks in presence of such region-based faults. One important finding of this research is that if some prior knowledge is available on the maximum size of the region that might be affected due to a region-based fault, this piece of knowledge can be effectively utilized for resource efficient design of networks. It has been shown in this dissertation that in some scenarios, effective utilization of this knowledge may result in substantial saving is transmission power in wireless networks. In this dissertation, the impact of region-based faults on the connectivity of wireless networks has been studied and a new metric, region-based connectivity, is proposed to measure the fault-tolerance capability of a network. In addition, novel metrics, such as the region-based component decomposition number(RBCDN) and region-based largest component size(RBLCS) have been proposed to capture the network state, when a region-based fault disconnects the network. Finally, this dissertation presents efficient resource allocation techniques that ensure tolerance against region-based faults, in distributed file storage networks and data center networks.
ContributorsBanerjee, Sujogya (Author) / Sen, Arunabha (Thesis advisor) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Hurlbert, Glenn (Committee member) / Arizona State University (Publisher)
Created2013
151517-Thumbnail Image.png
Description
Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like

Data mining is increasing in importance in solving a variety of industry problems. Our initiative involves the estimation of resource requirements by skill set for future projects by mining and analyzing actual resource consumption data from past projects in the semiconductor industry. To achieve this goal we face difficulties like data with relevant consumption information but stored in different format and insufficient data about project attributes to interpret consumption data. Our first goal is to clean the historical data and organize it into meaningful structures for analysis. Once the preprocessing on data is completed, different data mining techniques like clustering is applied to find projects which involve resources of similar skillsets and which involve similar complexities and size. This results in "resource utilization templates" for groups of related projects from a resource consumption perspective. Then project characteristics are identified which generate this diversity in headcounts and skillsets. These characteristics are not currently contained in the data base and are elicited from the managers of historical projects. This represents an opportunity to improve the usefulness of the data collection system for the future. The ultimate goal is to match the product technical features with the resource requirement for projects in the past as a model to forecast resource requirements by skill set for future projects. The forecasting model is developed using linear regression with cross validation of the training data as the past project execution are relatively few in number. Acceptable levels of forecast accuracy are achieved relative to human experts' results and the tool is applied to forecast some future projects' resource demand.
ContributorsBhattacharya, Indrani (Author) / Sen, Arunabha (Thesis advisor) / Kempf, Karl G. (Thesis advisor) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2013
Description
The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for

The purpose of this paper is to introduce a new method of dividing wireless communication (such as the 802.11a/b/g
and cellular UMTS MAC protocols) across multiple unreliable communication links (such as Ethernet). The purpose is to introduce the appropriate hardware, software, and system architecture required to provide the basis for a wireless system (using a 802.11a/b/g
and cellular protocols as a model) that can scale to support thousands of users simultaneously (say in a large office building, super chain store, etc.) or in a small, but very dense communication RF region. Elements of communication between a base station and a Mobile Station will be analyzed statistically to demonstrate higher throughput, fewer collisions and lower bit error rates (BER) with the given bandwidth defined by the 802.11n wireless specification (use of MIMO channels will be evaluated). A new network nodal paradigm will be presented. Alternative link layer communication techniques will be recommended and analyzed for the affect on mobile devices. The analysis will describe how the algorithms used by state machines implemented on Mobile Stations and Wi-Fi client devices will be influenced by new base station transmission behavior. New hardware design techniques that can be used to optimize this architecture as well as hardware design principles in regard to the minimal hardware functional blocks required to support such a system design will be described. Hardware design and verification simulation techniques to prove the hardware design will accommodate an acceptable level of performance to meet the strict timing as it relates to this new system architecture.
ContributorsJames, Frank (Author) / Reisslein, Martin (Thesis advisor) / Ying, Lei (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
152164-Thumbnail Image.png
Description
Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11

Contention based IEEE 802.11MAC uses the binary exponential backoff algorithm (BEB) for the contention resolution. The protocol suffers poor performance in the heavily loaded networks and MANETs, high collision rate and packet drops, probabilistic delay guarantees, and unfairness. Many backoff strategies were proposed to improve the performance of IEEE 802.11 but all ignore the network topology and demand. Persistence is defined as the fraction of time a node is allowed to transmit, when this allowance should take into account topology and load, it is topology and load aware persistence (TLA). We develop a relation between contention window size and the TLA-persistence. We implement a new backoff strategy where the TLA-persistence is defined as the lexicographic max-min channel allocation. We use a centralized algorithm to calculate each node's TLApersistence and then convert it into a contention window size. The new backoff strategy is evaluated in simulation, comparing with that of the IEEE 802.11 using BEB. In most of the static scenarios like exposed terminal, flow in the middle, star topology, and heavy loaded multi-hop networks and in MANETs, through the simulation study, we show that the new backoff strategy achieves higher overall average throughput as compared to that of the IEEE 802.11 using BEB.
ContributorsBhyravajosyula, Sai Vishnu Kiran (Author) / Syrotiuk, Violet R. (Thesis advisor) / Sen, Arunabha (Committee member) / Richa, Andrea (Committee member) / Arizona State University (Publisher)
Created2013
152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
ContributorsShirazipourazad, Shahrzad (Author) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Saripalli, Srikanth (Committee member) / Arizona State University (Publisher)
Created2014