Matching Items (35)

128557-Thumbnail Image.png

Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

Description

Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for

Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

Contributors

Agent

Created

Date Created
  • 2016-01-27

Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres

Description

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and

Heterochromatin is a repressive chromatin compartment essential for maintaining genomic integrity. A hallmark of heterochromatin is the presence of specialized nonhistone proteins that alter chromatin structure to inhibit transcription and recombination. It is generally assumed that heterochromatin is highly condensed. However, surprisingly little is known about the structure of heterochromatin or its dynamics in solution. In budding yeast, formation of heterochromatin at telomeres and the homothallic silent mating type loci require the Sir3 protein. Here, we use a combination of sedimentation velocity, atomic force microscopy and nucleosomal array capture to characterize the stoichiometry and conformation of Sir3 nucleosomal arrays. The results indicate that Sir3 interacts with nucleosomal arrays with a stoichiometry of two Sir3 monomers per nucleosome. We also find that Sir3 fibres are less compact than canonical magnesium-induced 30 nm fibres. We suggest that heterochromatin proteins promote silencing by ‘coating’ nucleosomal arrays, stabilizing interactions between nucleosomal histones and DNA.

Contributors

Created

Date Created
  • 2014-08-01

130285-Thumbnail Image.png

Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling

Description

Carbohydrates are one of the four main building blocks of life, and are categorized as monosaccharides (sugars), oligosaccharides and polysaccharides. Each sugar can exist in two alternative anomers (in which

Carbohydrates are one of the four main building blocks of life, and are categorized as monosaccharides (sugars), oligosaccharides and polysaccharides. Each sugar can exist in two alternative anomers (in which a hydroxy group at C-1 takes different orientations) and each pair of sugars can form different epimers (isomers around the stereocentres connecting the sugars). This leads to a vast combinatorial complexity, intractable to mass spectrometry and requiring large amounts of sample for NMR characterization. Combining measurements of collision cross section with mass spectrometry (IM–MS) helps, but many isomers are still difficult to separate. Here, we show that recognition tunnelling (RT) can classify many anomers and epimers via the current fluctuations they produce when captured in a tunnel junction functionalized with recognition molecules. Most importantly, RT is a nanoscale technique utilizing sub-picomole quantities of analyte. If integrated into a nanopore, RT would provide a unique approach to sequencing linear polysaccharides.

Contributors

Agent

Created

Date Created
  • 2016-12-21

130334-Thumbnail Image.png

The Telomere Binding Protein TRF2 Induces Chromatin Compaction

Description

Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has

Mammalian telomeres are specialized chromatin structures that require the telomere binding protein, TRF2, for maintaining chromosome stability. In addition to its ability to modulate DNA repair activities, TRF2 also has direct effects on DNA structure and topology. Given that mammalian telomeric chromatin includes nucleosomes, we investigated the effect of this protein on chromatin structure. TRF2 bound to reconstituted telomeric nucleosomal fibers through both its basic N-terminus and its C-terminal DNA binding domain. Analytical agarose gel electrophoresis (AAGE) studies showed that TRF2 promoted the folding of nucleosomal arrays into more compact structures by neutralizing negative surface charge. A construct containing the N-terminal and TRFH domains together altered the charge and radius of nucleosomal arrays similarly to full-length TRF2 suggesting that TRF2-driven changes in global chromatin structure were largely due to these regions. However, the most compact chromatin structures were induced by the isolated basic N-terminal region, as judged by both AAGE and atomic force microscopy. Although the N-terminal region condensed nucleosomal array fibers, the TRFH domain, known to alter DNA topology, was required for stimulation of a strand invasion-like reaction with nucleosomal arrays. Optimal strand invasion also required the C-terminal DNA binding domain. Furthermore, the reaction was not stimulated on linear histone-free DNA. Our data suggest that nucleosomal chromatin has the ability to facilitate this activity of TRF2 which is thought to be involved in stabilizing looped telomere structures.

Contributors

Created

Date Created
  • 2011-04-19

132726-Thumbnail Image.png

Atomic Force Microscopy Imaging of Chromatin in Cancerous and Non-Cancerous Esophageal Cells

Description

Atomic force microscopy (AFM) was used to study structural differences in the chromatin of cancerous (CP-D) and non-cancerous (EPC2) cell lines. Chromatin samples were extracted using a salt fractionation

Atomic force microscopy (AFM) was used to study structural differences in the chromatin of cancerous (CP-D) and non-cancerous (EPC2) cell lines. Chromatin samples were extracted using a salt fractionation protocol and subject to Mnase digestion for 2, 4, 8, and 16 minutes. Samples were then immobilized on APTES-functionalized mica sheets. Images were produced using the tapping mode capabilities of the AFM and structural differences between cell lines were quantified using image processing software. Vast differences in chromatin structure were observed between cancerous and non-cancerous cell lines and it was discovered that CP-D chromatin is present as scattered nucleosomes and nucleosome aggregates while EPC2 chromatin is present in intricate arrays. It was also observed that in both the CP-D and EPC2 cell lines, nucleosomes were more isolated and less apparent at longer Mnase digestion times. These findings lead to the conclusion that as the DNA becomes sufficiently digested, chromatin and nucleosomal arrays begin to deteriorate and lose their complex and elaborate structure.

Contributors

Agent

Created

Date Created
  • 2019-05

152097-Thumbnail Image.png

Nanofluidics for single molecule DNA sequencing

Description

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent

After a decade of efforts, accurate and affordable DNA sequencing continues to remain an important goal in current research landscape. This thesis starts with a brief overview of the recent updates in the field of DNA sequencing technologies followed by description of the nanofluidics route to single molecule DNA detection. Chapter 2 presents discusses carbon nanotube(CNT) based nanofluidics. The fabrication and DNA sensing measurements of CNT forest membrane devices are presented. Chapter 3 gives the background for functionalization and recognition aspects of reader molecules. Chapter 4 marks the transition to solid state nanopore nanofluidics. The fabrication of Imidazole functionalized nanopores is discussed. The Single Molecule detection results of DNA from Palladium nanopore devices are presented next. Combining chemical recognition to nanopore technology, it has been possible to prolong the duration of single molecule events from the order of a few micro seconds to upto a few milliseconds. Overall, the work presented in this thesis promises longer single molecule detection time in a nanofludic set up and paves way for novel nanopore- tunnel junction devices that combine recognition chemistry, tunneling device and nanopore approach.

Contributors

Agent

Created

Date Created
  • 2013

150143-Thumbnail Image.png

Measurement of molecular conductance

Description

This dissertation describes the work on two projects which involves measuring molecular conductance and studying their properties on the nanoscale using various Scanning Tunneling Microscopy (STM) techniques. The first molecule

This dissertation describes the work on two projects which involves measuring molecular conductance and studying their properties on the nanoscale using various Scanning Tunneling Microscopy (STM) techniques. The first molecule studied was a porphyrin-fullerene moiety known as a molecular Dyad for photovoltaic applications. This project is further divided into two section, the first one involving the characterization of the Dyad monolayers and conductance measurement in the dark. The Dyads are designed to form charge separated states on illumination. The lifetime of the charged states have been measured efficiently but the single-molecule conductance through the molecules have yet to be characterized. The second part of the project describes the set-up of a novel sample stage which enables the study of molecular conductance under illumination. This part also describes the subsequent study of the molecule under illumination and the observation of a unique charge-separated state. It also contains the verification of the presence of this charge-separated using other characterization techniques like transient absorption spectroscopy. The second project described in the dissertation was studying and comparing the predicted rectifying nature of two molecules, identical in every way except for one stereocenter. This project describes the formation of monolayers of the molecule on gold and then studying and analyzing the current-voltage characteristics of the molecules and looking for rectification. Both the molecules proved to be rectifying, one more than the other as predicted by theoretical calculations.

Contributors

Agent

Created

Date Created
  • 2011

154379-Thumbnail Image.png

Synthesis of organic linkers for studying biomolecular interactions, site-specific chemical modification of peptides and its translocation studies through nanopore

Description

Biomolecules can easily recognize its corresponding partner and get bound to it, resulting in controlling various processes (immune system, inter or intracellular signaling) in biology and physiology. Bonding between two

Biomolecules can easily recognize its corresponding partner and get bound to it, resulting in controlling various processes (immune system, inter or intracellular signaling) in biology and physiology. Bonding between two partners can be a result of electrostatic, hydrophobic interactions or shape complementarity. It is of great importance to study these kinds of biomolecular interactions to have a detailed knowledge of above mentioned physiological processes. These studies can also open avenues for other aspects of science such as drug development. Discussed in the first part of Chapter 1 are the biotin-streptavidin biomolecular interaction studies by atomic force microscopy (AFM) and surface plasmon resonance (SPR) instrument. Also, the basic working principle of AFM and SPR has been discussed.

The second part of Chapter 1 is discussed about site-specific chemical modification of peptides and proteins. Proteins have been used to generate therapeutic materials, proteins-based biomaterials. To achieve all these properties in protein there is a need for site-specific protein modification.

To be able to successfully monitor biomolecular interaction using AFM there is a need for organic linker molecule which helps one of the investigating molecules to get attached to the AFM tip. Most of the linker molecules available are capable of investigating one type of interaction at a time. Therefore, it is significant to have linker molecule which can monitor multiple interactions (same or different type) at the same time. Further, these linker molecules are modified so that biomolecular interactions can also be monitored using SPR instrument. Described in Chapter 2 are the synthesis of organic linker molecules and their use to study biomolecular interaction through AFM and SPR.

In Chapter 3, N-terminal chemical modification of peptides and proteins has been discussed. Further, modified peptides are attached to DNA thread for their translocation through the solid-state nanopore to identify them. Synthesis of various peptide-DNA conjugates and their nanopore studies have been discussed in this chapter.

Contributors

Agent

Created

Date Created
  • 2016

157705-Thumbnail Image.png

Top-Down and Bottom-Up Strategies to Prepare Nanogap Sensors for Controlling and Characterizing Single Biomolecules

Description

My research centers on the design and fabrication of biomolecule-sensing devices that combine top-down and bottom-up fabrication processes and leverage the unique advantages of each approach. This allows for

My research centers on the design and fabrication of biomolecule-sensing devices that combine top-down and bottom-up fabrication processes and leverage the unique advantages of each approach. This allows for the scalable creation of devices with critical dimensions and surface properties that are tailored to target molecules at the nanoscale.

My first project focuses on a new strategy for preparing solid-state nanopore sensors for DNA sequencing. Challenges for existing nanopore approaches include specificity of detection, controllability of translocation, and scalability of fabrication. In a new solid-state pore architecture, top-down fabrication of an initial electrode gap embedded in a sealed nanochannel is followed by feedback-controlled electrochemical deposition of metal to shrink the gap and define the nanopore size. The resulting structure allows for the use of an electric field to control the motion of DNA through the pore and the direct detection of a tunnel current through a DNA molecule.

My second project focuses on top-down fabrication strategies for a fixed nanogap device to explore the electronic conductance of proteins. Here, a metal-insulator-metal junction can be fabricated with top-down fabrication techniques, and the subsequent electrode surfaces can be chemically modified with molecules that bind strongly to a target protein. When proteins bind to molecules on either side of the dielectric gap, a molecular junction is formed with observed conductances on the order of nanosiemens. These devices can be used in applications such as DNA sequencing or to gain insight into fundamental questions such as the mechanism of electron transport in proteins.

Contributors

Agent

Created

Date Created
  • 2019

157642-Thumbnail Image.png

Biophysical Methods to Quantify Cancer Cells and Microengineered Cancer Tissues Properties

Description

Mechanical properties, in particular elasticity, of cancer cells and their microenvironment are important in governing cancer cell fate, for example function, mobility, adhesion, and invasion. Among all tools to measure

Mechanical properties, in particular elasticity, of cancer cells and their microenvironment are important in governing cancer cell fate, for example function, mobility, adhesion, and invasion. Among all tools to measure the mechanical properties, the precision and ease of atomic force microscopy (AFM) to directly apply force—in the range of Pico to micronewtons—onto samples—with length scales from nanometers to tens of micrometers—has made it a powerful tool to investigate the mechanics of materials. AFM is widely used to measure deformability and stiffness of soft biological samples. Principally, these samples are indented by the AFM probe and the forces and indentation depths are recorded. The generated force-indentation curves are fitted with an elastic contact model to quantify the elasticity (e.g. stiffness). AFM is a precise tool; however, the results are as accurate as the contact model used to analyze them. A new contact model was introduced to analyze force-indentation curves generated by spherical AFM probes for deep indentations. The experimental and finite element analysis results demonstrated that the new contact model provides more accurate mechanical properties throughout the indentation depth up to radius of the indenter, while the Hertz model underestimates the mechanical properties. In the classical contact models, it is assumed that the sample is vertically homogenous; however, many biological samples—for example cells—are heterogeneous. A novel two-layer model was utilized to probe Polydimethylsiloxane hydrogel (PDMS) layers on PDMS substrates with stiffness mismatch. In this experiment the stiffness of the substrate was deconvoluted from the AFM measurements to obtain the stiffness of the layer. AFM and confocal reflectance microscopy were utilized along with a novel 3D microengineered breast cancer tumor model to study the crosstalk between cancer tumor and the stromal cells (CAFs) and the ECM remodeling caused by their interplay. The results showed that as the cancer cells invade into the extracellular matrix (ECM), they release PDGF ligands which enable Cafes to remodel the ECM and this remodeling increased the invasion rate of the cancer cells. Next, the effect of the ECM remodeling on anti-cancer drug resistant was investigated within the 3D microengineered cancer model. It was demonstrated that the combinatory treatment by anti-cancer and-anti-fibrotic drugs enhance the efficiency of the cancer treatment. A novel DNA-based 3D hydrogel model with tunable stiffness was investigated by AFM. The results showed the hydrogel stiffness can be enhanced by adding DNA crosslinkers. In addition, the stiffness was reduced to the control sample level by introducing the displacement DNA. Biophysical quantifications along with the in vitro microengineered tumor models provide a unique frame work to study cancer in more detail.

Contributors

Agent

Created

Date Created
  • 2019