Matching Items (3)

155449-Thumbnail Image.png

Electrospinning of ceramic solid electrolyte nanowires for lithium-ion batteries with enhanced ionic conductivity

Description

Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and

Solid electrolytes have great potential to address the safety issues of Li-ion batteries, but better synthesis methods are still required for ceramics electrolytes such as lithium lanthanum titanate (LLTO) and lithium lanthanum zirconate (LLZO). Pellets made from ceramic nanopowders using conventional sintering can be porous due to the agglomeration of nanoparticles (NPs). Electrospinning is a simple and versatile technique for preparing oxide ceramic nanowires (NWs) and was used to prepare electrospun LLTO and LLZO NWs. Pellets prepared from the electrospun LLTO NWs had higher density, less void space, and higher Li+ conductivity compared to those comprised of LLTO prepared with conventional sol-gel methods, which demonstrated the potential that electrospinning can provide towards improving the properties of sol-gel derived ceramics. Cubic phase LLZO was stabilized at room temperature in the form of electrospun NWs without extrinsic dopants. Bulk LLZO with tetragonal structure was transformed to the cubic phase using particle size reduction via ball milling. Heating conditions that promoted particle coalescence and grain growth induced a transformation from the cubic to tetragonal phase in both types of nanostructured LLZO. Composite polymer solid electrolyte was fabricated using LLZO NWs as the filler and showed an improved ionic conductivity at room temperature. Nuclear magnetic resonance studies show that LLZO NWs partially modify the polymer matrix and create preferential pathways for Li+ conduction through the modified polymer regions. Doping did not have significant effect on improving the overall conductivity as the interfaces played a predominant role. By comparing fillers with different morphologies and intrinsic conductivities, it was found that both NW morphology and high intrinsic conductivity are desired.

Contributors

Agent

Created

Date Created
  • 2017

152551-Thumbnail Image.png

A novel handheld real-time carbon dioxide analyzer for health and environmental applications

Description

The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for

The accurate and fast determination of carbon dioxide (CO2) levels is critical for many health and environmental applications. For example, the analysis of CO2 levels in exhaled breath allows for the evaluation of systemic metabolism, perfusion, and ventilation, and provides the doctors and patients with a non-invasive and simple method to predict the presence and severity of asthma, and Chronic Obstructive Pulmonary Disease (COPD). Similarly, the monitoring of CO2 levels in the atmosphere allows for assessment of indoor air quality (IAQ) as the indoor CO2 levels have been proved to be associated with increased prevalence of certain mucous membrane and respiratory sick building syndrome (SBS) symptoms. A pocket-sized CO2 analyzer has been developed for real-time analysis of breath CO2 and environmental CO2. This CO2 analyzer is designed to comprise two key components including a fluidic system for efficient gas sample delivery and a colorimetric detection unit integrated into the fluidic system. The CO2 levels in the gas samples are determined by a disposable colorimetric sensor chip. The sensor chip is a novel composite based sensor that has been optimized to provide fast and reversible response to CO2 over a wide concentration range, covering the needs of both environmental and health applications. The sensor is immune to the presence of various interfering gases in ambient or expired air. The performance of the sensor in real-time breath-by-breath analysis has also been validated by a commercial CO2 detector. Furthermore, a 3D model was created to simulate fluid dynamics of breath and chemical reactions for CO2 assessment to achieve overall understanding of the breath CO2 detection process and further optimization of the device.

Contributors

Agent

Created

Date Created
  • 2014

151071-Thumbnail Image.png

Pervaporation of ethanol/water mixtures using PDMS mixed matrix membranes

Description

ABSTRACT Among the major applications of pervaporation membrane processes, organic separation from organic/water mixtures is becoming increasingly important. The polydimethylsiloxane (PDMS) is among the most interesting and promising membranes and

ABSTRACT Among the major applications of pervaporation membrane processes, organic separation from organic/water mixtures is becoming increasingly important. The polydimethylsiloxane (PDMS) is among the most interesting and promising membranes and has been extensively investigated. PDMS is an "organicelastomeric material, often referred to as "silicone rubber", exhibiting excellent film-forming ability, thermal stability, chemical and physiological inertness. In this thesis incorporation of nanosilicalite-1 particles into a PDMS matrix and effect of particle loading and temperature variation on membrane performance was studied. A strong influence of zeolite was found on the pervaporation of alcohol/water mixtures using filled PDMS membranes. The mixed matrix membrane showed high separation factor at higher zeolite loading and high flux at higher temperature.

Contributors

Agent

Created

Date Created
  • 2012